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a b s t r a c t

A nonlinear stochastic filtering scheme based on a Gaussian sum representation of the filtering density
and an annealing-type iterative update, which is additive and uses an artificial diffusion parameter, is
proposed. The additive nature of the update relieves the problem of weight collapse often encountered
with filters employing weighted particle based empirical approximation to the filtering density. The
proposed Monte Carlo filter bank conforms in structure to the parent nonlinear filtering (Kushner–
Stratonovich) equation and possesses excellent mixing properties enabling adequate exploration of the
phase space of the state vector. The performance of the filter bank, presently assessed against a few
carefully chosen numerical examples, provide ample evidence of its remarkable performance in terms of
filter convergence and estimation accuracy vis-à-vis most other competing filters especially in higher
dimensional dynamic system identification problems including cases that may demand estimating
relatively minor variations in the parameter values from their reference states.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic system identification aims at estimating the hidden
state processes that solve the system or process model, often in
the form of stochastic ordinary differential equations (SDEs), given
a set of noisy partial observations, which are typically character-
ized by the observation SDEs whose drift fields are known
functions of the system (process) states. The 'estimate of a state'
often stands for its mean (first moment) with respect to the
filtering probability density function (PDF) of the instantaneous
state conditioned on the observation history till the current time.
Variants of Bayesian filtering, which provide a computationally
feasible route in obtaining the filtering PDF, typically involve a
two-stage recursive procedure consisting of the prediction and
update stages. While the prediction stage recursively propagates
the process or system model in time, the predicted solution is
modified in the update stage in order to assimilate the currently
available observation consistent with a recursive form of the
generalized Bayes' formula [1] and thus characterize (marginals
of) the filtering PDF (also called the posterior PDF). The Kalman
filter (KF) has been a major breakthrough [2], providing for an
analytical scheme to arrive at the exact posterior PDF for a
linear Gaussian dynamic state space model. Nonlinear dynamical

systems with non-Gaussian additive/multiplicative noises may
also be dealt with, albeit sub-optimally, with the extended Kalman
filter (EKF) that employs linearized approximations to the signal-
observation dynamics. But the EKF and its variants [3] may
perform quite poorly where the dynamics are significantly non-
linear due to the imprecise Gaussian approximation of the transi-
tion law of the signal-observation process. Moreover, unless an
extensive tuning operation for the process noise covariance is
performed, the evolution of the analytical error covariance in the
KF/EKF may become divergent.

With the rapid emergence of cheaply available computing
resources, sequential Monte Carlo (SMC) methods such as particle
filters (PFs), which provide asymptotically optimal estimates for
nonlinear and non-Gaussian filtering problems, are being increas-
ingly used. PFs rely on a first order Markov model for the time-
discretized signal-observation processes and implement a recur-
sive Bayesian update by Monte Carlo (MC) simulations [4]. Over
a given time-step, they use particles, which are independently
sampled and weighted realizations of the random variables
(representing the instantaneous filtered states) to approximate
the continuous filtering PDF by random (empirical) measures.
Here the weights define the likelihood of the current observation
given the predicted particles available through time-integration of
the process dynamics. Being free from the approximations invol-
ving linearizations, PFs are endowed with the universality that
have seen their applications in the context of a wide-ranging
array of noisy nonlinear dynamical systems encountered in target
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tracking, digital communications, chemical engineering etc. [5–7].
Efforts to use a form of analyticity characteristic of the KF within
the framework of PFs have also led to the development of semi-
analytical PFs [8]. Such PFs transform the nonlinear system/
observations to an ensemble of piecewise linearized equations so
that the KF can be used for each linearized system to yield a family
of conditionally Gaussian posterior PDFs whose weighted sum
yield the filtering PDF. The accruing advantage of reduced sam-
pling variance however comes at the cost of a substantively
increased computational overhead as the current observation
must be repetitively assimilated for each linearized system.

Despite its universality and algorithmic simplicity, a PF is beset
with the generic problem of particle impoverishment in applica-
tions involving higher dimensional process models as the weights
tend to collapse to a point mass [9]. Indeed, the necessary sample
size needed to counter such weight degeneracy could be practi-
cally unattainable even with the best of computing resources. A
way out of this degeneracy, which is also the primary focus of this
article, could be provided through additive updates that may be
contrasted with the multiplicative, weight-based updates used
with the PFs. One such prominent example, the ensemble Kalman
filter (EnKF) that may be loosely viewed as an MC version of the KF
implementing additive gain-type updates, has indeed found ap-
plications in higher dimensional filtering problems in oceano-
graphic and atmospheric modeling [10]. The EnKF uses an en-
semble of system states predicted through the process dynamics,
thus avoiding the EKF-type Gaussian closure through linearization
in the prediction stage. However the additive update term, derived
based on an MC-version of the Kalman gain formula, brings back a
Gaussian closure approximation to the empirical filtering density.

As a sequel to our recent work on an iterated gain-based
stochastic filter (IGSF) [14] incorporating an iterative form of
additive updates on the predicted particles, our present aim is to
propose a substantively modified version of the algorithm in order
to introduce an explicit non-Gaussian representation of the filter-
ing density and an improved exploration of the process state space
during the iterated updating stage. As with the IGSF, the iterations
over a given time-step here are also aimed at driving the innova-
tion term to a zero-mean random variable. This is consistent with
the original aim of a stochastic filter as described by the Kushner–
Stratonovich (KS) equation [11], which is generally achieved by
designing the temporal recursion such that the innovation process
is reduced to a zero-mean martingale. The first part of the current
proposal is to develop the iterative and additive update through an
annealing-type parameterization using an artificial diffusion para-
meter (ADP). In addition, non-Gaussian representations of the
prediction and filtering densities are now provided through
Gaussian sums. Specifically, the iterations in the update stage
require ADP-parameterized repetitive computations of gain-like
coefficient matrices Ki

l (i being the temporal recursion step and l
the iteration index for a fixed i), consistent with the nonlinear KS
equation, with the initial guess Ki

0 evaluated on similar lines as in
an ensemble square root filter (EnSRF) [15]. In addition to captur-
ing non-Gaussianity in the posterior density, the Gaussian sum
filter bank [16] also helps exploring the phase space of the state
variables better and the added diversity in the particles enables
easier adaptation of the process dynamics with the measured
variables. The ADP, which may be lowered to zero over successive
iterations at a much faster rate (allowing even for a discontinuous
scheduling) than is feasible with the conventional simulated
annealing, also helps enhance the so called 'mixing property'
[17] of the iterative update kernels. An attempt is made to provide
adequate numerical evidence of the enhanced filter performance
with the introduction of some of these novel elements.

2. Statement of the problem

Let Ω ΡF( , , ) be a complete probability space with ≥F t, 0,t being
the σ-algebra generated by all the noise processes involved in the
presentation to follow at a given time t. The collection of sets
Ν = ≤ ≤F s t: { : 0 }t s

defines the so called increasing 'filtration' as t

increases. Also the time interval of interest τ[0, ] is discretized as
τ= < < =t t t t0 ..... ....i L0 1 with Δ = +t t t( , ]i i i 1 . The process model

describing the evolution of the so-called 'hidden' states of a
continuous-time dynamical system containing an additive Brow-
nian noise term (which may, among others, account for modelling
errors) may be represented by the Ito stochastic differential
equation (SDE) [18]

μ= +dX t X t t t dt G t dB t( ) ( ( ), ( ), ) ( ) ( ) (2.1)

where the state vector ∈X t( ) nx is a time-continuous signal,
   × × →+μ: n n nx x is the system transition function,
= ∈B t B t r q( ) { ( ): [1, ]}r( ) is a q-dimensional vector of independently

evolving zero-mean Ft-Brownian motion processes with =B (0) 0r( )

and E − = −B t B s t s{( ( ) ( )) }r r( ) ( ) 2 , where E denotes the expectation
with respect to the probability measure Ρ, and  →+ ×G: n rx is the
diffusion or volatility co-efficient matrix. System identification typi-
cally involves estimating the uncertain or inadequately known
parameters μ ∈ μt( ) n in the system model and a solution, within
the stochastic filtering framework, requires declaring μ t( ) as addi-
tional states. The original state space model (SSM) is thus augmented
by allowing μ t( ) to artificially evolve as a vector Brownian motion, as
depicted through the following system of zero-drift SDEs:

μ = μ μd t G dB t( ) ( ) (2.2)

where ∈μ
×μ μG n n is the diffusion coefficient matrix and ∈μ

μB t( ) n , a
zero-mean Brownian noise vector process. In fact, restricting Eq. (2.2)
over different time sub-intervals =+t t i{( , ], 0, 1, ... }i i 1 , μ t( ) may be
interpreted as a collection of local Brownian motions (i.e. different
mean vectors over different sub-intervals), or, more generally, as local
martingales (see [1] for a definition of local martingales). The
augmented state vector (with parameters as additional states) is

now denoted as μ~ = = ~ | ∈ ∈ = + μX X X j J J n n: [ , ] { [1, ]} ;T T T j J
x

( )
.

The response of the dynamic system is partially observed through
the noisy and continuous measurement process given by the SDEs
(written below in the integral form):

∫= ~ + *Z t A X s ds G B t( ) ( , ) ( ) (2.3a)
t

z z
0

or more appropriately, since the measurements arrive in a time-
discrete manner, by a discrete algebraic counterpart of the above
equation:

ι= = ~ ++ + + +Z t Z X t G( ): ( , ) (2.3b)i i i i z1 1 1 1

Here
~ = ~

+ +X X t( )i i1 1 , = ∈ ∈Z Z m d{ : [1, ]}m d( ) denotes the vector
of measurements, ιis a d-dimensional vector of N(0, 1) indepen-
dent normal random variables with coefficient matrix ∈ ×Gz

d d.
Thus the covariance matrix of the discrete measurement noise
vector ιGz is given by ∈ ×G Gz z

T d d. The measurement vector
function:

  = ~ × → ∈+ +μH X t k d: { ( , ): ; [1, ]}k n n( ) x

maps the signal process
~
X t( ) to d. Let = …Z Z Z: { , , }i i

T
1: 1 denote

the set of measurement vectors till t¼ti. The process Eqs. (2.1) and
(2.2) may now be combined to yield the nonlinear SSM:

~~ = ~ + ~ ~
dX t X t dt G t dB t( ) ( , ) ( ) ( ) (2.4)

where 
~ ~= ∈ ∈j J: { , [1, ]}

j J( )
and 

~ ∈ ×G t( ) J J are respectively
the nonlinear drift vector and the diffusion coefficient matrix. The
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