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a b s t r a c t

In this paper the solution of the generalization of the Kolmogorov–Feller equation to the case of
parametric input is treated. The solution is obtained by using complex Mellin transform and complex
fractional moments. Applying an invertible nonlinear transformation, it is possible to convert the
original system into an artificial one driven by an external Poisson white noise process. Then, the
problem of finding the evolution of the probability density function (PDF) for nonlinear systems driven
by parametric non-normal white noise process may be addressed in determining the PDF evolution of a
corresponding artificial system with external type of loading.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In many cases of engineering interest the exciting forces
depend upon the configuration of the structure, such as the case
of follower forces. These systems are usually referred as para-
metric or multiplicative ones. A common procedure, in case of
systems driven by a normal parametric white noise, consists in
modifying the drift term of the stochastic differential equa-
tion (SDE) by adding the Wong–Zakai or Stratonovich (WZ–S)
corrective term which accounts for the irregularities of the
Brownian motion [1]. Once the original SDE is modified, the
nonanticipating fundamental property of the Itô stochastic differ-
ential calculus (SDC) may be used, the Fokker–Plank equation is
then readily found for the modified system, and the response
statistics may be pursued in a very easy way. In the case of external
Poissonian white noise input (additive case), the equation ruling
the evolution of the probability density function (PDF) is the so
called Kolmogorov–Feller (K–F) equation, in which the counterpart
of the diffusive term is a convolution integral whose kernel is the
probability of the spike occurrences. For these systems exact
solutions may be found in literature for a very restricted class of
nonlinearities and of PDF of impulse amplitude [2,3], whereas
some numerical methods have been developed [4–9].

In the case of Poissonian white noise parametric input a
hierarchy of corrective terms is necessary to get the jumps for
each Dirac's delta occurrence [10–15]. Once the drift term is
modified, the Kolmogorov–Feller equation may be obtained taking
into account the impulsive character of the input. It is worth
noting that the great majority of numerical methods available in
literature deal with Gaussian or Poisson white noise external
excitation, while the relevant analysis on multiplicative excitation,
especially for the Poisson white noise case, is less addressed.
Reader could refer to [16], and references therein, for a report on
the numerical procedures available.

This paper aims at solving the aforementioned modified K–F
equation with the aid of the so-called complex fractional moments
(CFMs) [17,18]. These complex quantities are nothing else than
moments of the type E½jXjγ �, γAℂ, where XAℝ is a real random
variable whose probabilistic characterization may be given both
by the PDF pXðxÞ and its Fourier transform, namely the character-
istic function (CF) ϕXðϑÞ. In particular in [17] it has been shown
that CFMs are directly related to the Riesz fractional integral
(see Appendix A) of order γ of the CF in zero, that is
ðIγϕXÞð0Þ ¼ �E½jXj� γ �; Reγ40. Further in [18] relations between
CFMs and the Mellin transform of the PDF has been demonst-
rated in the form E½jXj� γ � ¼ 2ℳuð�γþ1Þ, where ℳuð�γþ1Þ ¼R1
0 uðxÞx� γ dx is the Mellin transform of the even part uðxÞ of the
PDF pXðxÞ.

The appealing in working with these quantities instead of the
classical moments are two-fold: (i) the CFMs never diverge (also
for α-stable processes), provided the real part of γ belongs to the
so-called fundamental strip of the Mellin transform; and (ii) CFMs
are able to represent both PDF and the CF.
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It is worth noting that recently the authors [19] introduced this
approach for the solution of the K–F equation for nonlinear
systems driven by external Poisson white noise process. Further,
as well described in [20,21], it is possible to relate systems driven
by external white noise to nonlinear systems driven by parametric
type of excitation, through a nonlinear invertible transformation.
In this way, once the PDF of the corresponding artificial system
with external excitation is found, the PDF of the nonlinear system
driven by parametric white noise may be readily obtained.

In this paper, taking full advantages of the method developed in
[19] together with the nonlinear invertible transformation procedure
described in [20,21], the evolution of the response PDF of nonlinear
systems under parametric Poissonian white noise is restituted.

In order to assess the validity of the proposed method applica-
tion to a nonlinear system driven by parametric Poisson white
noise is presented and solution in terms of PDF is compared with
that obtained with pertinent Monte Carlo simulations.

2. Kolmogorov–Feller equation

In this section the K–F equation and its generalization to the
case of parametric input is briefly introduced for sake of
completeness.

2.1. Kolmogorov–Feller equation (external excitation)

Let WðtÞ be a Poisson white noise process. It is constituted by a
train of impulses of random amplitude Y, with assigned PDF
pY ðy; tÞ. The impulse occurrence is distributed in time according
to a Poisson law. Then each impulse Yk occurs at a time Tk. The two
random variables Y and T are independent each another. Under
these assumptions the Poisson white noise is given as

WðtÞ ¼ ∑
NðtÞ

k ¼ 1
Yk δðt�TkÞ ð1Þ

where δðdÞ is the Dirac's delta and NðtÞ is a Poisson counting
process giving the number of impulses in 0=t. The Poisson white
noise may be considered as the formal derivative of the Compound
Poisson process CðtÞ. Then

CðtÞ ¼ ∑
NðtÞ

k ¼ 1
Yk Uðt�TkÞ ð2Þ

where UðdÞ is the unit step function. Increment of the Compound
Poisson process are characterized by

E½dCðtÞj� ¼ λðtÞE½YðtÞj�dt ð3Þ
where E½d� stochastic average and λðtÞ the mean number of
impulses per unit time. If λ is a constant, then the Poisson white
noise is stationary.

Let the equation of motion of a nonlinear system driven by the
Poisson white noise be given in the form

_X ¼ f ðX; tÞþWðtÞ
Xð0Þ ¼ X0

(
ð4Þ

where f ðX; tÞ is a nonlinear function of the process XðtÞ and X0 is
the initial condition, that is a random variable with assigned PDF
in zero pXðx;0Þ ¼ pðxÞ.

The equation ruling the evolution of the PDF of the response
process XðtÞ is the so-called Kolmogorov–Feller equation, that may
be written as

∂pX ðx;tÞ
∂t ¼ � ∂

∂xðf ðx; tÞpXðx; tÞÞ�λðtÞpXðx; tÞþλðtÞ R1�1 pY ðξÞpXðx�ξ; tÞdξ
pXðx;0Þ ¼ pðxÞ

(
ð5Þ

For simplicity sake's we suppose that pðxÞ and pY ðyÞ have
symmetric distributions and f ðx; tÞ ¼ � f ð�x; tÞ 8 t. Under these

assumptions pXðx; tÞ ¼ pXð�x; tÞ 8 t. The case of non symmetric
distribution may be faced by considering the paper [18].

2.2. Modified Kolmogorov–Feller equation (parametric excitation)

Consider the equation of motion of a nonlinear system driven
by a parametric Poisson white noise process, that is

_X ¼ f ðX; tÞþgðX; tÞ WðtÞ
Xð0Þ ¼ X0

(
ð6Þ

In this case the impulses are modulated by a nonlinear function
of the response gðX; tÞ. Let us suppose that gðX; tÞ is 1 time
differentiable on X. If gðX; tÞ ¼ 1 8 t then the excitation is external,
Eq. (5) remains valid and at each Dirac's delta occurrence at time
Tk the sample function of XðtÞ exhibits a jump that is exactly Yk

(amplitude of the spike at time Tk). If gðX; tÞ is a function of XðtÞ
then the jump depends both on the value of gðX; tÞ immediately
before the impulse and on the amplitude of the spike [14]; in this
case each jump at time Tk is given as

ΔXk ¼ ∑
1

j ¼ 1
Yj
k
gðjÞðXðT �

k Þ; TkÞ
j!

ð7Þ

where gðjÞ can be evaluated in recursive form as follows:

gðjÞðXðtÞ; tÞ ¼ ∂gðj�1ÞðXðtÞ; tÞ
∂X

gð1ÞðXðtÞ; tÞ ð8:aÞ

gð1ÞðXðtÞ; tÞ ¼ gðXðtÞ; tÞ ð8:bÞ
where ΔXk ¼ XðT þ

k Þ�XðT �
k Þ, the superscripts þ and � stand for

immediately after and before the jump occurrence, respectively.
As soon as the jump is predicted by knowing the intensity Yk of

the spike occurring at time Tk and the value of the response XðT �
k Þ,

that is the response immediately before the Dirac's delta occur-
rence, the non-anticipating property of the Itô calculus may be
inferred. The Kolmogorov–Feller equation extended to the case of
parametric Poisson white noise may be written in the form [21]

∂pX ðx; tÞ
∂t

¼ � ∂
∂x
ðf ðx; tÞpXðx; tÞÞþλ ∑

1

k ¼ 1

ð�1Þk
k!

∂k

∂xk

pX ðx; tÞ ∑
1

j ¼ 1
∑
1

l ¼ 1
… ∑

1

p ¼ 1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
k� f old

gðjÞðxÞgðlÞðxÞ…gðpÞðxÞ
j!l!⋯p!

2
66664

3
77775E½Yjþ lþ…þp�

8>>>><
>>>>:

9>>>>=
>>>>;

ð9Þ

With this information we can now proceed towards the
solution of this equation by using complex fractional moments.
This issue will be addressed in the next section.

3. Mellin transform and complex fractional moment

Let pXðx; tÞ ¼ pXð�x; tÞ, that is the response of Eq.(4) is symme-
trically distributed. This may happen with some restrictions: both
f ðX; tÞ and gðX; tÞ are antisymmetric, the PDF of the impulses is
such that pY ðy; tÞ ¼ pY ð�y; tÞ and the distribution of X0 is sym-
metric. With these restrictions the approach in terms of complex
fractional moments is quite simple. The case of non-symmetric
distribution may be treated with the results given in [18].

If pXðx; tÞ is symmetric, we may evaluate pXðx; tÞ in the positive
range 0rxr1 by using the Mellin transform defined as

ℳfpX ðx; tÞ; γg ¼
Z 1

0
pXðx; tÞxγ�1 dx¼ℳpX ðγ�1; tÞ ð10Þ

where γ ¼ ρþ iη with ρ; η Aℝ and ρ belongs to the Fundamental
Strip (FS) of the Mellin transform. In particular the FS is
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