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A novel approximate analytical technique for determining the non-stationary response probability
density function (PDF) of randomly excited linear and nonlinear oscillators endowed with fractional
derivatives elements is developed. Specifically, the concept of the Wiener path integral in conjunction
with a variational formulation is utilized to derive an approximate closed form solution for the system
response non-stationary PDF. Notably, the determination of the non-stationary response PDF is
accomplished without the need to advance the solution in short time steps as it is required by the
existing alternative numerical path integral solution schemes which rely on a discrete version of
the Chapman-Kolmogorov (C-K) equation. This is accomplished by circumventing the solution of the
associated Euler-Lagrange equation ordinarily used in the path integral based procedures. The accuracy
of the technique is demonstrated by pertinent Monte Carlo simulations.
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1. Introduction

Since the pioneering work by Gemant [1] and Bosworth [2],
who first proposed fractional derivatives modeling for the con-
stitutive behavior of viscoelastic media based on past results by
Nutting [3], fractional calculus has been successfully applied in
diverse fields such as viscoelasticity and rheology, control theory,
biophysics, bioengineering, image and signal processing, and
random walk models. A rather detailed account of various recent
theoretical advances and applications of fractional calculus in the
various fields can be found in the books by Sabatier et al. [4] and
by Hilfer [5]. In this regard, applications of fractional derivatives in
structural engineering for vibration control or seismic isolation
purposes include modeling of the restoring force of structural
systems equipped with viscoelastic dampers (e.g. [6-10]). In this
regard, the theoretical modeling and analytical derivations have
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been found in quite good agreement with experimental data (e.g.
Makris and Constantinou [11,12]).

Note that limitations pertaining to available information and
the interpretation of prevalent mechanisms, as well as inherent
uncertainty in critical engineering problems have necessitated the
study of systems with stochastic parameters, input, and initial/
boundary conditions. In this context, a stochastic approach con-
stitutes a rational basis for system analysis and sustainable design.
Nevertheless, complex nonlinear and hysteretic behavior observed
in many systems renders such a stochastic analysis a persistent
challenge. In this regard, it is pointed out that although theoretical
research in the field of stochastic dynamics has already led to
seminal advancements (e.g. [13,14]), the adoption and general-
ization of potent mathematical tools and concepts from theoretical
physics, such as the Wiener/Feynman path integral [15-17], can
offer a novel perspective and tools for engineering systems.

Monte Carlo simulation (MCS) techniques (e.g. Rubinstein and
Kroese [18]) have been among the most versatile tools for determin-
ing, the response statistics of arbitrary stochastic systems. However,
there are cases, especially for large scale complex systems, where
MCS techniques can be computationally prohibitive. Thus, there is a
need for developing alternative efficient approximate analytical and/
or numerical solution techniques (e.g. see [19-21] for some recent
references). In this regard, one of the promising frameworks relates
to the concept of the Wiener path integral (WPI). It is noted that
although the WPI has been well established in the field of theoretical
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physics, the engineering community has ignored its potential as a
powerful uncertainty quantification tool. The concept of path integral
was introduced by Wiener [15,16] and was reinvented in a different
form by Feynman [17] to reformulate quantum mechanics. A detailed
treatment of path integrals, especially of the Feynman path integral
and its applications in physics, can be found in a number of books
such as the one by Chaichian and Demichev [22]. Recently, an
approximate analytical WPI technique for addressing certain stochas-
tic engineering dynamics problems was developed by Kougioumt-
zoglou and Spanos [23]. The technique is based on a variational
principle formulation in conjunction with a stochastic averaging/
linearization treatment of the nonlinear equation of motion. In this
regard, relying on the concept of the most probable trajectory an
approximate expression was derived for the non-stationary response
probability density function (PDF). Further, the aforementioned
technique was extended by Kougioumtzoglou and Spanos [24] to
treat multi-degree-of-freedom (MDOF) systems and hysteretic non-
linearities. The enhanced technique circumvents approximations
associated with the stochastic averaging/linearization treatment of
the previous development.

In passing it is noted that the aforementioned WPI technique
should not be confused with alternative numerical schemes
(commonly referred to as numerical path integral schemes) which
constitute, in essence, a discrete version of the Chapman-Kolmo-
gorov (C-K) Egs. [25-29]. In this regard, utilizing the C-K equation
the basic characteristic of those schemes is that the evolution of
the PDF is computed in short time steps; thus, rendering the
schemes computationally demanding potentially.

In this paper the WPI technique is further generalized to treat
linear and nonlinear systems endowed with fractional derivatives
terms subject to stochastic excitation. In this regard, it is noted
that alternative existing approaches for determining the stochastic
response of linear and nonlinear oscillators endowed with frac-
tional derivatives elements resort either to stochastic averaging
[30,31] or to statistical linearization [32] or to a simplification of
the original single-degree-of-freedom-system (SDOF) by an
increase of the system dimension [33,34]. These techniques
exhibit various degrees of approximation or limitation. Thus, the
herein developed WPI technique may offer a desirable alternative
for determining the non-stationary response PDF of linear and
nonlinear oscillators efficiently with a satisfactory degree of
accuracy.

2. Analytical Wiener path integral formulation
2.1. Probability density functional

In the following the analytical WPI based technique, developed
in Kougioumtzoglou and Spanos [20,24] is extended and general-
ized to account for linear and nonlinear SDOF systems endowed
with fractional derivatives elements. In this regard, consider the
nonlinear oscillator whose motion is governed by the differential
equation
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where a dot over a variable denotes differentiation with respect to
time (t); (f,-D‘t’x) is a restoring force governed by an a-order left
Caputo fractional derivative defined as [35]
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wg is the natural frequency; C, is a constant which can be viewed
as a damping coefficient if «=1, or as a stiffness coefficient if
a=0; f(x, fiD‘t’x) represents a non-linear function depending on the
instantaneous values of x and (f,-D’t’x); and w(t) is a zero mean

Gaussian white noise process of power spectral density Sg. Note
that Eq. (1) reduces to the equation of motion of a conventional
(non-fractional) nonlinear oscillator [24] when « approaches one.

Further, regarding the WPI [22], it can be realized as a
functional integral over the space of all possible paths
C{a;, tj;ap , ty} starting at point a(t;) = a; and having the endpoint
a(ty) = as, where a(t) denotes an arbitrary stochastic process. It
possesses a probability distribution on the path space as its
integrand, which is denoted by W[a(t)] and is called probability
density functional. In this manner, the transition PDF is given by
{ar .t
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Note that the probability density functional for the white noise
process w(t) is given by [22,36]
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where C is a normalization coefficient. Following next the
approach proposed in Kougioumtzoglou and Spanos [24], Eq. (1)
is substituted into Eq. (4) and the probability density functional
W[w(t)] for w(t) is interpreted as the probability density functional
WI(x(t)] for x(t). This yields
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2.2. Lagrangian formulation and fractional variational principle for
the most probable path

It can be readily seen that even if the probability density
functional is constructed, the analytical solution of the WPI of Eq.
(3) is at least a rather daunting, if not impossible, procedure. Thus, to
circumvent the aforementioned challenge, several research efforts
have focused on developing approximate techniques for determining
the transition PDF p(ay , tf|a;, t;). In this regard, researchers invoked a
variational formulation and defined a Lagrangian function for deter-
mining the most probable path, namely the most probable trajectory
that connects the points a(t;)=a; and a(ty) = a;. In this manner, a
variational principle can lead to the associated Euler-Lagrange
equation, whose solution is the most probable process realization;
see Chachian and Demichev [22] and Kougioumtzoglou and Spanos
[23] for a more detailed presentation.

Specifically, for the oscillator of Eq. (1), the corresponding
Lagrangian function can be defined as
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Adopting next the variational formulation followed in Kougioumt-
zoglou and Spanos [20,24] the largest contribution to the Wiener
path integral comes from the trajectory for which the integral in
the exponential becomes as small as possible. Variational calculus
rules [37] dictate that this trajectory with fixed end points satisfies
the extremality condition
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where x. denotes the most probable trajectory. In the ensuing
analysis, the variational problem defined in Eq. (7) is coined
fractional variational problem (FVP), since Eq. (7) contains an
a-order left Caputo fractional derivative. This yields a correspond-
ing Euler-Lagrange equation of the form
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