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a b s t r a c t

This paper deals with the characterization of the random response of linear systems subjected to stochastic
load. It proposes a new method based on the new version of the Probabilistic Transformation Method (PTM)
that allows obtaining, with a very low computational effort, the probability density function of the response.
An important aspect of the proposed approach is the ability to join directly the pdfs of the input load with
those of the response. Based on the step-by-step integration method, explicit solutions will be proposed for
the random response of systems loaded by seismic and windy sampled inputs.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The characterization of the random response of a structural time-
dependent system often requires a high computational effort. Actually,
even for a system subjected to static actions the effort can be very high;
this is related to the number of random variables involved and the type
of probability distribution that characterizes them. The full probabilistic
characterization of a random variable is given by the knowledge of its
probability density function (pdf), or by its characteristic function (cf).
Unfortunately there are no exact solutions, except for some simple
cases, such as for linear systems subjected to Gaussian input.

The literature presents several methods that allow reconstructing
the pdf response by using the moments (or cumulants) series
method, with a relatively low computational effort [1–5]. The validity
of these approaches was largely confirmed; however they lack a
direct nature, namely the ability to join directly the pdf of the input
with that of the output. Also, in the case of strong non-Gaussian
response, a very high number of moments/cumulants are necessary
and the convergence of these methods is not always guaranteed;
and, at last, a very high computational effort is usually related to
them. For the dynamic systems, sometimes, the evaluation of the
random response is limited to the evaluation of the second order
correlations and/or power spectral densities. In these cases, the
literature shows several works, some of which providing exact
solutions [6–8] or very powerful numerical procedures [9,10]. Monte

Carlo methods [11,12] exhibit the well known problem that the
accuracy of the estimates depends on the sampling size of the
stochastic processes, besides the number of samples, increasing
the related computational effort. Even these methods, moreover,
do not define a direct input–output relationship in terms of pdf.

Aim of this work is to show the potential of the new version of
the Probabilistic Transformation Method (PTM), first introduced
by Falsone and Settineri for the static problem [13,14], to obtain
the pdf response of some linear dynamic systems subjected to the
non-Gaussian time-dependent input process.

2. Preliminary concepts

The differential equation governing the dynamic behavior of a
multi-degrees-of-freedom linear system is usually written as follows:

M €uðtÞþC _uðtÞþKuðtÞ ¼ fðtÞ ð1Þ
where M, C and K are the system mass, damping and stiffness n�n
matrices, respectively, uðtÞ is the n-vector that collects the system
degrees of freedom, and fðtÞ is the n-vector of the external loads. In
the state space variables, the equation of motion is rewritten in the
following form:

_xðtÞ ¼DxðtÞþvfðtÞ ð2Þ
where

xðtÞ ¼
uðtÞ
_uðtÞ

 !
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The vector xðtÞ, collecting the response state variables, can be
evaluated by Duhamel's integral, that is

xðtÞ ¼ΘðtÞx0þ
Z t

0
Θðt�τÞvfðτÞdτ ð4Þ

where x0 is the vector collecting the initial conditions at t ¼ 0, and
ΘðtÞ is the fundamental matrix related to the differential equation
of motion, that can be defined in the following way:

ΘðtÞ ¼ expðDtÞ ð5Þ
The response system xðtÞ can be evaluated numerically by

several methods; among these, the step-by-step integration
method, based on the fundamental matrix, will be used in this
work. This method enables us to solve in closed form, in a generic
step Δt, the convolution integral given in Eq. (4), once a poly-
nomial interpolation law is assumed for the vector load fðtÞ in
correspondence of the same time step Δt. As an example, assum-
ing for fðtÞ a linear interpolation law within the interval ½tk�1; tk�,
one obtains the following step-by-step numerical procedure:

xðtkÞ ¼ xðkΔtÞ ¼ΘðΔtÞxðtk�1ÞþΓ0ðΔtÞfðtk�1ÞþΓ1ðΔtÞfðtkÞ ð6Þ
xðtkÞ being the system response at the time tk ¼ kΔt; analogously
fðtkÞ is the vector load evaluated at the same time. The vector
operators Γ0ðΔtÞ and Γ1ðΔtÞ are given by the following relation-
ships:

Γ1ðΔtÞ ¼
LðΔtÞ
Δt

�I
� �

D�1v;Γ0ðΔtÞ ¼ ΘðΔtÞ�LðΔtÞ
Δt

� �
D�1v;

LðΔtÞ ¼ ½ΘðΔtÞ�I�D�1 ð7a–cÞ

Appling recursively the step-by-step procedure given above, it
is possible to define the relationship between the response system
at the time tk and all the vectors load fðtiÞ, i¼ 0;1; :::; k, that is

xðtkÞ ¼ xðkΔtÞ ¼ΘkðΔtÞxðt0ÞþΘk�1ðΔtÞΓ0ðΔtÞfðt0Þþ

þ ∑
k�1

i ¼ 1
Θk� iðΔtÞΓ1ðΔtÞþΘk� i�1ðΔtÞΓ0ðΔtÞ
h i

fðtiÞþΓ1ðΔtÞfðtkÞ

ð8Þ
If the system is driven by a random vector load, even the

structural response is a random process and it must be defined
probabilistically. In this case, all the vectors load fðtiÞ, with
i¼ 0;1; :::; k, appearing in Eq. (8), can be considered as samples
of the stochastic process fðtÞ extracted at the sampling step Δt;
correspondently, the vector response xðtkÞ represents a sample
response of the stochastic process xðtÞ. In order to characterize
probabilistically the stochastic process xðtÞ, one could characterize
the sample response xðtkÞ; this is what made in this work, and, as
will be shown later, the fundamental approach to obtain this result
is the PTM, whose basic concepts are discussed in next section.

3. Basic concept of the PTM

The PTM is based on some relationships that enable to join the
joint probability density functions (jpdfs) of two random vectors
connected by a deterministic law. Let us consider an n-dimensional
random vector x and a n-dimensional invertible application
g�1ðdÞ ¼ hðdÞ such that

x¼ hðfÞ; f ¼ gðxÞ ð9a� bÞ
x being a random vector, as well as f. The jpdfs of x and f,
that are pxðxÞ and pf ðfÞ, are joined by the following relationships
[15–20]:

pxðxÞ ¼
1

jdet½JhðxÞ�j
pf ðgðxÞÞ

pxðxÞ ¼
Z þ1

�1

Z þ1

�1
::ðnÞ::

Z þ1

�1
pf ðyÞδðx�hðyÞÞdy ð10a� bÞ

JhðxÞ being the Jacobian matrix related to the transformations
given in Eq. (9) and δðx�hðyÞÞ the n-dimensional Dirac Delta
centered in the coordinate vector hðyÞ, that are

JhðxÞ ¼ ð∇T
f � hðfÞÞjf ¼ gðxÞ;

δðx�hðyÞÞ ¼ δðx1�h1ðyÞÞδðx2�h2ðyÞÞ::δðxn�hnðyÞÞ ð11a� bÞ

In Eq. (11a), ∇T
f is the nth order row-vector differential operator

collecting all the partial derivatives with respect to the component
f i of f and the symbol � indicates the Kronecker product; in
Eq. (11b) hjðyÞ (with j¼ 1;2:::;n), is the jth element of the n-
dimensional application hðyÞ.

Eq. (10) provides a direct relation between the pdfs of the
random vectors x and f. Eq. (10a) requires that the random vectors
have the same order; however this aspect is not a restriction and
can be overcome easily [15]; it also requires that hðdÞ has only one
inverse application gðdÞ. If hðdÞ has more than one inverse
application, pxðxÞ is defined as the summation of Eq. (10a) like
relation over all the possible inversion points [15]. Eq. (10a)
provides a direct relation between the jpdfs of the random vectors
x and f by a multidimensional integral and does not require the
knowledge of the Jacobian matrix. From Eq. (10b) it is possible to
obtain the integral relationship of every marginal pdf by integrat-
ing respect to the all other variables and taking into account the
properties of the Dirac Delta functions. For example, the first and
second order marginal pdfs have the following integral relation-
ships:

pxj ðxjÞ ¼
Z þ1

�1

Z þ1

�1
::ðnÞ::

Z þ1

�1
pf ðyÞδðxj�hjðyÞÞdy ð12Þ

pxjxk ðxj; xkÞ ¼
Z þ1

�1

Z þ1

�1
::ðnÞ::

Z þ1

�1
pf ðyÞδðxj�hjðyÞÞδðxk�hkðyÞÞdy

ð13Þ
From Eqs. (12) and (13) it is possible to obtain the integral
relationships of the first and second order characteristic functions;
applying the Fourier transform to both sides of Eq. (12) and the
double Fourier transform to both sides of Eq. (13), one obtains

Mxj ðωÞ ¼
1
2π

Z þ1

�1
pxj ðxjÞexpð� iωxjÞdxj

¼ 1
2π

Z þ1

�1

Z þ1

�1
::ðnÞ::

Z þ1

�1
pf ðyÞexpð� iωhjðyÞÞdy ð14Þ

Mxjxk ðωj;ωkÞ ¼
1

ð2πÞ2
Z þ1

�1

Z þ1

�1
pxjxk ðxj; xkÞexpð� iωjxj� iωkxkÞdxjdxk

¼ 1
ð2πÞ2

Z þ1

�1

Z þ1

�1
::ðnÞ::

Z þ1

�1
pf ðyÞexpð� iωjhjðyÞ

� iωkhkðyÞÞdy ð15Þ

Eqs. (14) and (15) are the reference relations of the new version of
the PTM proposed by Falsone and Settineri [19,20]. In the classical
approach based on the PTM, the relationship (10a) is used, with
the drawback related to the uniqueness of the inverse application,
as discussed above. Moreover, to obtain any marginal pdf the
evaluation of a multi-dimensional integral is necessary, and this
can be computationally very heavy, above all of very large systems.
Nevertheless, even Eqs. (12) and (13) require the solution of a
multi-dimensional integral; however, in some cases Eqs. (14) and
(15) can be solved in closed form, requiring only an inverse Fourier
transform to obtain the marginal pdf.

For example, these relations give very interesting results in the
case of linear transformations, that is if f and x are connected by a
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