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a b s t r a c t

This paper investigates the stochastic dynamics, stability and control of a ship-based crane payload
motion, as well as the first time passage type of failure. The simplified nonlinear model of the payload
motion is considered, where the excitation of a suspension point is imposed due to the heaving motion of
waves. The latter enters the system parametrically, leading to a Mathieu type nonlinear equation. The
stability boundaries are numerically calculated, using the Lyapunov exponent approach. The control
strategy, based on the feedback bang–bang control policy, is implemented to minimize the load's
swinging motion. Finally, the first time passage problem is addressed employing Monte-Carlo sampling
of the failure process.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Different types of cranes are used for lifting heavy payloads
every day. There are cranes, which operate worldwide today,
among which one can name the most commonly used: a rotary
crane, boom crane and gantry crane [1]. Besides the issues of re-
liability and safety of the cranes there are other problems related
to their performance such as the maximum payload and how fast
they can move the payload from one location to another. The latter
may be a critical problem especially at a ship recovery operation,
when a large ship has to lift up a small boat or submersible vehicle
from the sea surface, despite sea conditions. It is well known that
the load, which is transported, may swing due to the motion of the
crane or severe atmospheric conditions, especially wind. This
motion, if not controlled, may lead to additional forces in the cable,
causing the crane to lose its payload or collapse. Obviously, off-
shore or ship based cranes have an additional source of excitation
due to a wave motion. In particular, heaving motion of waves may
provoke parametric excitation of the crane base, which can be
especially dangerous when the wave frequency is twice larger
than the natural frequency of the system. In that case one may
expect parametric resonance to occur, which leads to the in-
stability of the payload motion. Results of numerical modeling and
experiments of floating cranes behavior may be found, for instance
in [2]. No doubt that the excessive amplitude of oscillations, at
ship recovery operations, may cause a collision of the payload
against the ship with unpredictable consequences. Thus, it is

important to understand the behavior of the payload under a wave
like motion of an offshore structure in order to develop a proper
control strategy. Some control strategies have been proposed
earlier for deterministic excitations [1,3,4]. A control strategy for
reducing swing oscillations due to stochastic excitation may be
found in [5,6].

There are several ways to model a load motion, one of which
reduces to a lumped mass system, the motion of which can be
represented by a spherical pendulum. Such a system with a con-
stant pendulum length is described by two differential equations
in 3D space. There are a number of papers devoted to the dy-
namics of a spherical pendulum [7–10]. In these papers the au-
thors were concerned with stability boundaries of the system re-
sponse due to deterministic excitation. The stability analysis was
performed on the system, where the sinus type nonlinearity was
replaced by a few terms of the Taylor series.

In this paper the authors consider the simplified dynamics of a
ship-based crane payload motion, which is governed by a non-
linear Mathieu equation with a narrow band parametric excitation,
whereas the motion of a payload is eventually modeled by a planar
pendulum. The excitation is considered in the vertical direction
due to heaving motion of waves. The waves are modeled using a
harmonic function with random phase modulations and the sta-
bility boundaries are calculated using the Largest Lyapunov Ex-
ponents (LLE). Furthermore, in order to improve the system per-
formance a control of the length of the linearized pendulum is
implemented and its influence on the stability boundaries is
sought, indicating the asymptotic stability of the bottom equili-
brium point. Finally, the first time passage reliability problem is
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considered for different threshold angles for the nonlinear system
to quantify the instability rate.

2. Dynamics of a spherical pendulum

Let us consider the dynamics of a spherical pendulum, the
suspension point of which is excited in the vertical z direction. In
the following derivations we assume a non-stretchable cable of a
constant length L. Thus, the coordinates of the pendulum may be
expressed as a function of their angles as

θ ϕ θ ϕ η θ= = = +x L y L z Lsin sin sin cos cos (2.1)

where η η= t( ) is the displacement of the suspension point (or ri-
gidly connected ship crane). To construct the Lagrangian, it is re-
quired to obtain the velocity of the mass M. Let us differentiate Eq.
(2.1) with respect to time:
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so that the velocity can be written as
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corresponds to the spherical pendulum motion with a stationary
suspension point. Thus, one gets the following expression for the
Lagrangian:

Γ θ= − −Mv MgL(1 cos ) (2.5)
1
2

2

Two equations of motion can be obtained using this approach:
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Substituting Eqs. (2.4) and (2.5) into the second equation reduces
(2.6) to the following expression:

ϕ θ = –H const
.
sin (2.7)2

which can be interpreted as a conservation of angular momentum.
The first equation will be written as

θ η θ θ ϕ θ θ¨ − ¨ + − =ML M L MgL MLsin sin
.

sin cos 0 (2.8)2 2

This equation is the exact equation of the motion of a spherical
pendulum with vertically excited suspension point. Simplifying
this expression, taking into account the expression for ϕ

.
, one ob-
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with Ω = g L/ denoting the natural frequency. It should be noted
that Eq. (2.7) (and therefore Eq. (2.9)) is valid for any positive value
of H only when the angle θ ≠ 0 or θ π≠ , whereas at these
equilibrium points the velocity ϕ

.
becomes infinite. Thus, since

this paper is focused on studying the oscillatory motion in θ
direction, and not in the conical type motion, zero velocity ϕ =

.
0 is

taken, so that the last term will disappear and equation of motion
will resemble the in-plane oscillations of a parametrically excited
pendulum. Rotational stochastic potential of a plane pendulum has
already been studied in [11].

3. Dynamics of a SDOF model

3.1. Problem statement

Since Eq. (2.9) is nonlinear it is difficult to apply any analytical
techniques to solve it approximately. Thus it is required to im-
plement the Taylor expansion and keep a few first terms in the
equation. In Cartesian coordinates (x,y), Eq. (2.9) can be written so
that [1,12]
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where α is the viscous damping coefficient, η t( ) is the exciting
force, acting in vertical direction and
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To simplify the problem further we assume a planar motion,
setting out-of-plane motion to zero:

α Ω η¨ + + + = − ¨x x x xg x
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L
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Eq. (3.3) is a nonlinear equation, which contains the parametric
excitation. In the case of a purely periodic excitation Eq. (3.3) will
become nonlinear Mathieu type equation. Some numerical results
of system (3.3) under a deterministic excitation are reported in [2].
However, in the case of a ship crane the load due to sea waves is
narrow-banded and described by a Pierson–Moskowitz (PM)
spectra [13]. The latter can be reasonably well modeled by a har-
monic function with random phase fluctuations [14,15]:

η λω ω σζ¨ = − = +q t q tcos ( ),
.

( ) (3.4)2

where ζ t( ) is a Gaussian white noise with ζ ζ τ δ τ〈 + 〉 = =t t D( ) ( ) ( ) σ δ τ( )2

and λ, ω the excitation's amplitude and frequency respectively.

3.2. Stochastic averaging

Since the excitation acting onto the system is multiplicative, it
is important to investigate possible parametric instability, which
happens when the excitation frequency is twice the natural fre-
quency of the system. Let us introduce slowly varying amplitude
and phase of the response:
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Because g x( , 0) contains the second derivative, Eq. (3.3) can be
rearranged as follows:
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Applying the stochastic averaging technique to Eq. (3.6) one
can arrive to a set of two first order nonlinear stochastic differ-
ential equations for the response amplitude:
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