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a b s t r a c t

In this study, a version of the regulated stochastic linearization technique is proposed for the nonlinear
random vibrations of Bernoulli–Euler nonlinear beams. For analysis, in order to balance the error of
linearization, we utilize the regulated technique; namely, the appearing nonlinear terms are first
replaced by higher-order nonlinear expressions that are subsequently reduced, in stages, to linear ones.
It is demonstrated that this seemingly a “roundabout” way is extremely effective to derive a solution that
turns out to be much closer to the results provided by the Monte Carlo simulation than those derived via
the conventional or potential energy linearization techniques, in the cases of large nonlinearity.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In 1995, Anh and Di Paola [1] suggested a version of the stochastic
linearization technique for solving stochastic nonlinear problems.
The authors resorted to introduction of the auxiliary step prior to
solving the nonlinear stochastic differential equation. This additional
step consists in replacing nonlinear terms with “even more nonlinear”
terms. These higher order terms are then replaced by linear term in
several steps, in each of them reducing the level of nonlinearity.

This technique called as “regulated Gaussian equivalent lineariza-
tion” (RGEL) was shown to provide an effective method of solution for
single-degree-of-freedom systems [1]. The authors conducted a single-
step regulation, implying introduction of the one-step complication of
the nonlinear term. Elishakoff et al. [2] extended the methodology of
Anh and Di Paola to two-step regulation. The latter extension showed
considerable improvement of the results in comparison with both the
classical scheme of the stochastic linearization, as well as the single-
step regulation, in the Lutes and Sarkani oscillator [3].

Until now, no extension has been made of this technique to
continuous systems. In this study, we extend the RGEL technique
to nonlinear vibrations of Bernoulli–Euler beams.

2. Regulated Gaussian equivalent linearization

2.1. Derivation of RGEL technique

In Ref. [1], Anh and Di Paola studied the following nonlinear
random vibration problem:

€zþ2h_zþω2
0zþgðz; _zÞ ¼ ζðtÞ; ð1Þ

where zðtÞ; _zðtÞ; €zðtÞ are the displacement, velocity and accelera-
tion of a single-degree-of-freedom system, respectively; h is the
damping coefficient, ω0 is the natural frequency of the system
obtained when h� 0; g� 0; ζ� 0; gðz; _zÞ is a nonlinear function,
ζðtÞ is a zero-mean Gaussian random excitation. Let gðz; _zÞ be a
polynomial expression of z and _z. The nonlinear function gðz; _zÞ
then takes the following form:

gðz; _zÞ ¼ ∑
M

n ¼ 0
∑
M

m ¼ 0
ðαnm _z2nz2mþ1þβnmz

2n _z2mþ1Þ; ð2Þ

where αnm; βnm are constants. Since Ref. [1] is not uniformly
available, we will describe the method by Anh and Di Paola in
some details. First of all, we note that the classical linearization
would perform the following replacement of the nonlinear terms
by the linear ones:

αnm _z2nz2mþ1-αnmz; ð3Þ

βnmz
2n _z2mþ1-βnm _z; ð4Þ

where the coefficients αnm; βnmare determined by the minimum
mean-square deviation criterion,

E½ðαnm _z2nz2mþ1�αnmzÞ2�-min
αnm

; ð5Þ

E½ðβnmz2n _z2mþ1�βnm _zÞ2�-min
βnm

: ð6Þ

Instead, most unusually, at least at the first glance, Anh and Di
Paola [1] suggested to replace nonlinear terms by higher-order
nonlinear ones,

αnm _z2nz2mþ1-αð1Þnmð_z2nz2mþ1Þð_z2nz2mÞ ¼ αð1Þnmð_z4nz4mþ1Þ; ð7Þ

βnmz
2n _z2mþ1-βð1Þnmðz2n _z2mþ1Þðz2n _z2mÞ ¼ βð1Þnmðz4n _z4mþ1Þ; ð8Þ
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where the authors used the mean-square criterion for obtaining
the coefficients αð1Þnm; βð1Þnm

E½ðαnm _z2nz2mþ1�α 1ð Þ
nm _z4nz4mþ1Þ2�-min

αð1Þnm

; ð9Þ

E½ðβnmz2n _z2mþ1�βð1Þnmz
4n _z4mþ1Þ2�-min

βð1Þnm

: ð10Þ

The minimization criteria (9) and (10) lead to the following
expressions for αð1Þnm; βð1Þnm:

αð1Þnm ¼ αnm
E½_z6nz6mþ2�
E½_z8nz8mþ2�

; ð11Þ

βð1Þnm ¼ βnm
E½z6n _z6mþ2�
E½z8n _z8mþ2�

: ð12Þ

In the next step, Anh and Di Paola replaced higher-order nonlinear
terms into the original nonlinear terms,

αð1Þnm _z4nz4mþ1-αð2Þnm _z2nz2mþ1; ð13Þ

βð1Þnmz
4n _z4mþ1-βð2Þnmz

2n _z2mþ1; ð14Þ
where

αð2Þnm ¼ αð1Þnm
E½_z6nz6mþ2�
E½_z4nz4mþ2�

; ð15Þ

βð2Þnm ¼ βð1Þnm
E½z6n _z6mþ2�
E½z4n _z4mþ2�

: ð16Þ

The final step is the conventional linear replacement

αð2Þnm _z2nz2mþ1-αð3Þnmz; ð17Þ

βð2Þnmz
2n _z2mþ1βð3Þnm _z; ð18Þ

where

αð3Þnm ¼ αð2Þnm
E½_z2nz2mþ2�

E½z2� ; ð19Þ

βð3Þnm ¼ βð2Þnm
E½z2n _z2mþ2�

E½_z2�
: ð20Þ

By substituting the expressions (11) and (15) into (19), the expres-
sions (12) and (16) into (20), we obtain the following expressions for
the coefficients αð3Þnm; βð3Þnm:

αð3Þnm ¼ αnm
E½_z2nz2mþ2�

E½z2�
E½_z6nz6mþ2�
E½_z4nz4mþ2�

E½_z6nz6mþ2�
E½_z8nz8mþ2�

; ð21Þ

βð3Þnm ¼ βnm
E½z2n _z2mþ2�

E½_z2�
E½z6n _z6mþ2�
E½z4n _z4mþ2�

E½z6n _z6mþ2�
E½z8n _z8mþ2�

: ð22Þ

The results (21) and (22) can be also obtained by using statistical
orthogonality of the difference of the left and right hand sides in
Eqs. (7), (13) and (17) and Eqs. (8), (14) and (18) as presented in [2].
The linearized equation of the original nonlinear Eq. (1) takes the
following form:

€zþ2h_zþω2
0zþ ∑

M

n ¼ 0
∑
M

m ¼ 0
ðαð3Þnmzþβð3Þnm _zÞ ¼ ζðtÞ; ð23Þ

where αð3Þnm; β
ð3Þ
nm are found from (21) and (22).

In order to elucidate the RGEL technique, as shown in [1], the
authors evaluated several oscillators under white noise excitation.
For illustration, in the following subsection, responses of a Duffing
oscillator subjected to random external force are considered.

2.2. Response of Duffing oscillator

Consider the following Duffing oscillator subjected to random
excitation:

€zþ2h_zþω2
0zþγz3 ¼ ζðtÞ; ð24Þ

where h; ω0; γ are positive real constants, ζðtÞ is a zero-mean
Gaussian white noise excitation with the constant spectral density
S0 and correlation RζðtÞ
RζðτÞ ¼ E½ζðtÞζðtþτÞ� ¼ 2πS0δðτÞ ð25Þ
where δðtÞ is the Dirac delta function. It is noted that, to obtain the
Duffing system (24), the parameters of Eq. (1) are taken to be
M¼ 1; n¼ 0; m¼ 1; α00 ¼ 0; α01 ¼ γ; β00 ¼ β01 ¼ 0: The linear-
ized equation of Eq. (24) takes the following form:

€zþ2h_zþω2
0keqz¼ ζðtÞ; ð26Þ

where the non-dimensional linearization coefficient keqis found
from a specified criterion of the linearization method. Here, we
use the regulation linearization procedure as presented above
for obtaining the coefficient keq. For this purpose, a linearization
scheme for the nonlinear term γz3 of the original Eq. (1) is applied
(see also in [2]),

γz3-
γ

9E½z2�z
5-

7γ
9
z3-

7γ
3
E z2
� �

z: ð27Þ

The regulation process for the nonlinear term γz3 is taken according
to the replacement steps (7), (13), (17). The linearization coeffi-
cient keq is found to be

keq ¼ 1þ 7γ
3ω2

0

E z2
� �

: ð28Þ

In order to find an approximate expression of E½z2�, we utilize the
following relationship for the linearized Eq. (26) between the
mean-square response E½z2� and spectral density S0 of random
excitation (see [4] for details):

E z2
� �¼ πS0

2hω2
0keq

: ð29Þ

Substituting Eq. (29) into Eq. (28) yields the following equation for
the unknown keq:

keq ¼ 1þ 7πγS0
6hω4

0keq
: ð30Þ

By solving Eq. (30) for the unknown keq, we obtain

keq ¼
1
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ14πγS0

3hω4
0

s !
: ð31Þ

Substituting the result (31) into the right hand side of Eq. (29), we
get an approximate expression for determining the mean-square
response E½z2�

E½z2�regulated ¼
πS0
hω2

0

1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ14πγS0

3hω4
0

q : ð32Þ

Similarly, for the case of conventional linearization, one gets the
expression of mean-square response E½z2�

E½z2�conventional ¼
πS0
hω2

0

1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ6πγS0

hω4
0

q : ð33Þ

The exact solution of E½z2� corresponding to the original nonlinear
Eq. (24) is evaluated by [5]

E½z2�exact ¼
R1
�1 z2exp � 2h

πS0
1
2ω

2
0z

2þ1
4γz

4
� �n o

dzR1
�1 exp � 2h

πS0
1
2ω

2
0z

2þ1
4γz

4
� �n o

dz
: ð34Þ

N.D. Anh et al. / Probabilistic Engineering Mechanics 35 (2014) 2–10 3



Download English Version:

https://daneshyari.com/en/article/804251

Download Persian Version:

https://daneshyari.com/article/804251

Daneshyari.com

https://daneshyari.com/en/article/804251
https://daneshyari.com/article/804251
https://daneshyari.com

