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a b s t r a c t

In this paper a time domain output-only Dynamic Identification approach for Civil Structures (DICS) first
formulated some years ago is reviewed and presented in a more generalized form. The approach in
question, suitable for multi- and single-degrees-of-freedom systems, is based on the statistical moments
and on the correlation functions of the response to base random excitations. The solving equations are
obtained by applying the Itô differential stochastic calculus to some functions of the response. In the
previous version ([21] Cavaleri, 2006; [22] Benfratello et al., 2009), the DICS method was based on the
use of two classes of models (Restricted Potential Models and Linear Mass Proportional Damping Models)
while its generalization for use with different models from the ones mentioned above is discussed. In the
paper the new class of models to which the DICS method is applicable are described. Further, the
advantages and disadvantages of the approach in question are examined, also by a comparison with
some techniques available in the literature.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many identification techniques are based on knowledge of input
(in a deterministic or probabilistic sense) both in the field of linear
system identification (e.g. [1–4]) and in the field of nonlinear system
identification (e.g. [5–7]). Unfortunately, input is not always avail-
able, as in the case of environmental excitations. In some cases it is
even unmeasurable. As an example, for a ship rolling in waves the
actual wave moment experienced by the ship when it is moving is
not measurable. However, not being constrained to measure the
input, even when it is measurable, is an advantage in any case.
Awareness of this has increased interest in the so-called output-only
identification techniques. In this field, referring to state invariant
systems some interesting approaches have been proposed in the
past (e.g. [8–16]). Nevertheless, in many cases, the approaches
proposed refer to single-degree-of-freedom systems, more fre-
quently linear or weakly nonlinear, or show computational difficul-
ties in the case of multi-degrees-of-freedom systems; in some cases
the damping estimation depends on a priori knowledge of the input,
evidencing a non-negligible limit.

Another question regards the linearity and the nonlinearity of the
systems to be identified. Currently the literature shows that

researchers maintain a certain interest in linear systems whose
identification is simpler to obtain. For example Ceravolo and
Abbiati [15] recently discussed some identification techniques (in
detail methods based on time series autoregressive (AR) models
are compared with the eigensystem realization algorithms (ERA)
applied to random decrement signatures and stochastic subspace
identification methods (SSI)). Besides, despite the fact that the
above techniques are suitable for linear systems, in [15] it is shown
that they require long time responses and in some cases show high
errors, mainly in the evaluation of the damping characteristics.

Within the context of output-only identification techniques,
Spiridonakos et al. [16] have also been interested in the identifica-
tion of linear systems: in this case time-varying systems are
considered and the possibility of their identification is discussed
by means of three different approaches based on the parametric
mathematical models of time-dependent autoregressive moving
averages (TARMA). These approaches are compared in terms of
frequencies referring to a steel beam clamped close to its ends on
vertical stands in a laboratory, considering a mass sliding on the
above steel beam.

In [17] too the interest is limited to linear systems, and further,
in this case, the problem of stiffness characterization is faced
neglecting the problem of the identification of the dissipation
characteristics.

The identification of nonlinear systems presents major difficulties
that cannot always be overcome. For example in [8] an approach is
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proposed for signal decomposition and nonlinearity identification in
the time domain based on the empirical mode decomposition
method (EMD) integrated by the use of a pair of sliding conjugate
functions, but its effectiveness has been proved in the case of a
weakly nonlinear Duffing oscillator under a harmonic excitation
having a frequency equal to the linear frequency of the oscillator in
question and in the case of free vibrations. In the work in question
the difficulties encountered in the identification of the parameter
characterizing both linear dissipation force and restoring forces are
pointed out, showing the failure of that technique in the case of
strong nonlinearities.

The nonlinearities to be identified are limited to the restoring
forces in [18] where an output-based approach is proposed which
uses empirical mode decomposition (EMD).

Further techniques in the nonlinear field are discussed in the
extended review proposed by Kerschen et al. [19], who underline
the difficulty of developing a method with broad applicability but
also the need to formulate techniques suitable not only in the case
of weak nonlinearities, to which most of the available techniques
are addressed.

In this framework, improvement of the available techniques or
the formulation of new ones is a goal to be reached.

Here, a time domain approach, proposed some years ago, is
reviewed and proposed again in an advanced generalized formu-
lation (DICS). In detail, this approach was applied in the past to
two specific classes of models and specific solving equations for
the classes of models considered were given [20–22]. The validity
of the DICS method could not be proved for classes different from
those mentioned above. Now the DICS method is presented in a
general formulation not depending on the classes of models
considered in the past, showing its capacity to overcome the limit
presented in the original formulation and the possibility of its
being applied to a larger number of models.

The technique in question has proved to be suitable for the
identification of SDOF and MDOF systems under unavailable white
noise input. Further, this technique effectively overcomes some
limits encountered in the techniques available in the literature.
For example, it gives the possibility of capturing either linearity
and nonlinearity without loss of reliability and of capturing either
weak and strong nonlinearities of MDOF systems, as will be
discussed in the next sections. The formulation here proposed
does not claim to solve all problems arising in system identifica-
tion, especially in nonlinear identification, but aims to make a
contribution to overcoming some longstanding difficulties.

The solving equations are obtained by using Itô calculus [23]
through three steps. The stiffness parameters are obtained in the
first one, while in the second and in the third the input and the
dissipation parameters are obtained.

As mentioned before the DICS method was initially formulated to
be used with only two classes of models, that is Restricted Potential
(non-linear) Models, as defined in [24–26], and classical linear models
with Mass Proportional Damping [27]. The advantage of using these
models is that the probability density functions (pdf) of the state
variables can be obtained in an exact analytical form. The availability of
the pdf has made it possible to prove some properties that have
allowed to obtain the identification algorithm in a special form, as will
be better explained in the next sections. Here, that algorithm is
presented in a form suitable for a more extended class of linear and
nonlinear systems, namely in a generalized form that makes it more
attractive for practical applications.

The approach discussed here refers to time invariant systems
but this does not preclude an extension to the case of time variant
mechanical characteristics.

In the paper comparisons between the results obtainable with
the proposed generalized approach and the results obtainable
with other techniques available in the literature are discussed.

2. The algorithm proposed for parameter identification

In the proposed procedure the identification problem consists
of searching for the best model of a system, invariant at least
during the experiment, whose response is observable (observable
means that at least the acceleration can be measured and conse-
quently velocity and displacement can be analytically obtained).
The model is completely defined and ready for structural analysis
when the values of the parameters of the restoring and of the
damping forces are estimated.

As mentioned before, the strategy for deriving the DICS algo-
rithm, in the version proposed in [21,22], depended on the use of
specific classes of models. In detail Restricted Potential Models
(RPM) and Mass Proportional Damping Models (MPDM) were
used. Here a generalized form of the DICS algorithm is proposed,
also to be used with classes of models different from RPM
and MPDM.

In order to derive the solving algorithm reference is made to
any dynamical system whose govern equation, normalized with
respect to masses, is

€Xþ ~DðX; _XÞþrðXÞ ¼ ~W ð1Þ
In Eq. (1) X is the n-dimensional displacement vector, the upper
dot means time derivative, r(X) is any vector of nonlinear func-
tions representing the restoring forces, and ~DðX; _XÞ is a vector of
dissipation forces given as

~DðX; _XÞ ¼ ~C
∂
∂ _X

ΔðHÞ: ð2Þ

In Eq. (2), ΔðU Þis a function of the total energy H of the system, H is
expressed as

H¼ 1
2
_X
2þUðXÞ; ∂UðXÞ

∂X i
¼ riðXÞ; ð3Þ

~C is a matrix of parameters, and ð∂=∂ _XÞT ¼ ðð∂=∂ _X1Þ; :::::; ð∂=∂ _XnÞÞ.
In Eq. (3) riðXÞ is the i-th entry of the vector of the restoring forces.
Finally, ~W ðtÞ (the external input) is a vector of zero mean white
noise processes characterized by the correlation matrix ~R whose
ij-th term ~Rij is

~Rij ¼ 2π ~K ijδðτÞ ¼ E½ ~WiðtÞ ~WjðtþτÞ� ð4Þ
In Eq. (4) E[ � ] is the average operator, t means time, τ is a time
delay, and δðτÞis the Dirac's delta. Moreover, ~K ij is the ij-th term of
the matrix K, which is the Power Spectral Density matrix of ~W .

Eq. (1) refers to linear or nonlinear dynamical systems both in
terms of restoring and dissipation forces. It gives a classical linear
system if rðXÞ ¼ RX and ΔðHÞ ¼H, and further it includes the RPM
and MPDM defined in [21,22].

Eq. (1) can be rewritten in the Itô form simply by setting
Z1 ¼ X, Z2 ¼ _X, that is

dZ1 ¼ Z2dt ð5aÞ

dZ2 ¼ � ~DðZ1;Z2Þdt�rðZ1Þdtþd ~B ð5bÞ
where ~B is the vector of the Wiener processes whose time formal
derivative is the white noise vector ~W ðtÞ, that is ðd ~B i=dtÞ ¼ ~W iðtÞ.

In the case of structures under base excitation, the input in
Eq. (1) can be rewritten in the form:

~W ¼ LW0 ð6Þ
L being the n-dimensional influence vector that in the case of

plane behavior assumes the form

LT ¼ ½1;1; ::::::::;1� ð7Þ
and W0 ¼ dB0=dt being the white noise base input whose power
spectral density is K0. In the case of base excitation each term of
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