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a b s t r a c t

The aim of this work is to show a novel approach for the analysis of random systems. This approach,
based on the application of the Probabilistic Transformation Method (PTM), is here developed for the
study of uncertain structural systems. These systems are characterized by the fact that some of their
geometrical and/or mechanical properties can be characterized only by a probabilistic point of view. In
particular, the goal of the proposed approach is the evaluation of the probability density function (pdf) of
a single response quantity avoiding the onerous operation of the variable saturation, which is necessary
when the classical PTM is applied.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This work is devoted to considering some random problems
where non linear transformations are involved. In particular, refer-
ring to structural systems, uncertainty on the material defines non
linear transformations: that is, the relation between the structural
response and the random inputs is nonlinear. This implies that the
response is always non-Gaussian even if the inputs are defined as
Gaussian random variables.

Referring to the general problem of non linear transformations
in the literature, besides that of the application of statistical
approaches based on the Monte Carlo Simulation (MCS) method [1],
other statistical approaches are those based on the closure schemes on
cumulants or quasi-moments, etc. [2]. Unfortunately, these approaches
lose accuracy when the response is strongly non-Gaussian [3].

In the specific field of uncertain systems a very large number of
papers were published in the last two decades, dealing with
different approaches. The simplest methods to estimate the random
characteristics of the response are the statistical approaches based
on the MCS [4,5], but they are the worst methods from a computa-
tional point of view. For this reason, some alternative non-statistical
methods have been proposed, as the perturbation approaches [6,7],
whose drawback lies in the consistent loss of accuracy when the
level of uncertainty of the structural parameters increases. These
problems remain even if some efforts have been made in order to
improve the approach [8]. Other non-statistical approaches are

based on the expansion methods of the structural stiffness matrix
in order to perform explicitly its inversion [9,10]. Another important
class of methods for solving uncertain structural systems is that of
projection approaches; among these, one of the most used is that
based on the polynomial chaos expansion [11].

The common characteristic of all these non-statistical probabil-
istic approaches is that the probabilistic description of the response
is related to the knowledge of its statistical moments, cumulants,
correlations or power spectral densities. In any case, these quantities
have dimensions of much greater order than that of the response
dimensions. Moreover, if the effective non-Gaussianity of the
response is considered, it is easy to realize that the stochastic
analysis of these systems is a very heavy problem from a computa-
tional point of view, the evaluation of statistics of greater order than
two being necessary. This drawback is above all emphasized in
the field of the reliability analysis where the response probabilistic
description is required directly on the probability density function
(pdf) of a single component of the response.

Recently a non-statistical non-perturbative MCS method has
been proposed for the analysis of FE discretized uncertain linear
structures [12,13].

More recently, a new approach for the analysis of random systems
has been introduced with the aim to overcome the difficulties
previously described [14,15]. This method can be considered as a
new version of PTM [16]: it allows the defining of some integral or
differential relations that provide a direct link between the probability
density of input and output. These relations, in some cases can be
solved in closed form, as shown in [14,15] for some problems
associated with linear and non-linear transformations. In this work,
this method will be applied to study systems with uncertainties,
which define a particular class of nonlinear transformations.
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2. The probabilistic transformation method

The basic aspects of the proposed approach must be researched
in the theory of the space transformation of random vectors,
briefly discussed below. This transformation allows making clear
the direct relationship between two random vectors in terms of
their pdfs.

Let x be an n-dimensional random vector with joint pdf pxðxÞ
and hðdÞ be an n-dimensional invertible application, such that

h�1ðdÞ ¼ fðdÞ; then it is possible to write

z¼ hðxÞ; x¼ fðzÞ ð1a;bÞ
It is well known that the pdfs of these two random vectors x

and z, are related as follows [17]:

pzðzÞ ¼
1

det½JhðfðzÞÞ�
�� ��pxðfðzÞÞ ð2Þ

where JhðzÞis the Jacobian matrix related to the transformations
given in Eq. (1). Eq. (2) allows the determining of the pdf pzðzÞ,
once the pdf pxðxÞ and the transformation law are given, and it
represents the reference differential relationship of the PTM.

The direct application of the PTM to structural problems can
show the following drawbacks:

1. The orders of x and z must be equal.
2. The evaluation of fðdÞ ¼ h�1ðdÞ is often a very hard task.
3. The extraction of the marginal pdf pzi ðziÞ from the joint pdf

pzðzÞ may be computationally heavy.

The first drawback is not a restriction of the method because it
is possible to make the vectors of the same order by introducing
some auxiliary variables [18]. The second and third drawbacks can
be, in some cases, avoided by applying the new version of the PTM,
which represents the aim of this work.

From Eq. (2) can be derived an important integral relation,
which is also able to establish a direct link between the probability
density function of x and z. In order to show this, Eq. (2) is
rewritten in the following way:

pzðzÞ ¼
Z þ1

�1
⋯

Z þ1

�1

1
jdet½JhðyÞ�j

pxðyÞδðy�fðzÞÞdy1⋯dyn ð3Þ

In Eq. (3) the multi-dimensional Dirac Delta, centered in the
point y¼ fðzÞ, was introduced

δðy�fðzÞÞ ¼ δðy1� f 1ðzÞÞδðy2� f 2ðzÞÞ:::::δðyn� f nðzÞÞ ð4Þ
The multi-dimensional Dirac Delta introduced above has non-

zero value only if y¼ fðzÞ; then, it is equivalent to a multi-

dimensional Dirac Delta centered in z¼ f �1ðyÞ ¼ hðyÞ, provided
to introduce the determinant of the Jacobian matrix related to the
application hðdÞ, that is
δðy�fðzÞÞ ¼ jdet½JhðyÞ�jδðz�hðyÞÞ ð5Þ

It is simple to verify that the determinant of the Jacobian
matrix Jh assures that the functions appearing in both sides of Eq.
(5) have area equal to 1. It is important to note that the validity of
Eq. (5) is limited to a biunique functions; nevertheless, this is not a
restriction, and a generalization can be shown. However here it is
omitted in order not to make the exposition of the method heavy.

After the insertion of the last equation into Eq. (3), the
following integral relationship is obtained:

pzðzÞ ¼
Z þ1

�1
⋯

Z þ1

�1
pxðyÞδðz�hðyÞÞdy1⋯dyn ð6Þ

As said before, the random response variable of interest may be
only one, but it is related to all the random input variables
collected into the vector x. Let zj be the random response variable

of interest, related to the n-vector x by the scalar transformation
hjðdÞ (j-th element of the application hðdÞ), that is
zj ¼ hjðxÞ ð7Þ

Then, by integrating both sides of Eq. (6) with respect to all the
variables zi; i¼ 1;2;3; ::::;n; ia j, the following relationship is
obtained:

pzj ðzjÞ ¼
Z þ1

�1
⋯

Z þ1

�1
pxðyÞδðzj�hjðyÞÞdy1⋯dyn ð8Þ

This, as will be seen in the following sections, is very suitable for
defining the response pdf.

Equation of the type given into Eq. (6) will be advantageously
used in the next sections of this work, and are the reference
integral relationships of the new version of the PTM.

The difficulty in applying the Eqs. (6) and (8) depends on
the transformation hjðdÞ. It is useful to define the following
classification:

(a) One defines linear transformations all those transformations
so that hjðdÞ is a linear applications. This category includes all
linear systems subject to random forcing.

(b) One defines nonlinear transformations all those transforma-
tions for which hjðdÞ is not linear.

This category includes the following cases:

(b1) Linear structural systems subject to loads defined as a
nonlinear function of random variables.
(b2) Linear structural systems with uncertain parameters.
(b3) Structural systems with non-linear constitutive properties
subject to random forcing and/or with uncertain parameters.

The cases (a) and (b1) have been addressed in [14,15] where
some explicit and approximated solutions based on the application
of the PTM were given. In this paper we will address the case (b2).

It is worthy to note that the new version of PTM is not a
revolution of the stochastic analysis, but the introduction of a new
philosophy of stochastic analysis that, still in its infancy, is trying
to overcome the limitations of known approaches.

3. Uncertain structural systems

The response of a discretized structural system, whose geome-
trical and/or mechanical properties are not deterministic, but
defined from a probabilistic point of view, is governed by an
equilibrium equation that can be expressed in the following form:

KðαÞuðαÞ ¼ F ð9Þ
where α is the m-vector collecting the random uncertain para-
meters of the structural system, that is supposed to be defined
through the knowledge of the joint pdf pαðαÞ; K is the structural
stiffness n� n matrix depending on the uncertain parameters; F is
the n-vector of the external actions, here considered deterministic,
and u is the n-vector of the response displacements, depending on
the structural parameters, and hence on α, apart from on the
external actions.

In order to express the relationship between α and u in the
form given in Eq. (1a), the inversion of Eq. (9) is required, giving

u¼K�1ðαÞF ð10Þ
The specification of the fundamental relationship given by Eq.

(2) to this relationship gives

puðuÞ ¼
1

det½JðuÞ�
�� �� pαðαðuÞÞ ð11Þ
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