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a b s t r a c t

This study presents a semi-analytical approach for the sensitivity analysis of the response of linear
discretized structures subjected to stationary multi-correlated Gaussian random excitation. The proposed
procedure relies on the use of the so-called rational series expansion (RSE), recently derived by the
authors for evaluating in approximate explicit form the inverse of a matrix with small rank-r
modifications. The RSE allows to determine the mean-value and power spectral density function of the
response as approximate explicit functions of the design parameters. Direct differentiation of these
functions with respect to the design parameters provides approximate analytical expressions of the
sensitivities of the probabilistic characteristics of the stationary stochastic response in the frequency
domain. Numerical results concerning different structural systems under random excitation are
presented to demonstrate the accuracy and efficiency of the proposed procedure.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The sensitivity analysis is a very useful tool for predicting the
variation of the structural response due to changes in design
parameters. It deals with the calculation of changes in the
response resulting from changes in the parameters describing
the structure and it basically relies on the evaluation of partial
derivatives of a performance measure with respect to system
parameters (see e.g. [1–3]).

The partial derivatives of the response with respect to the
design variables, also referred to as sensitivity coefficients, are
used in the solution of various problems: in design optimization,
these coefficients are employed to select a search direction in
order to optimize the performance under service loads as well as
to reduce global construction costs [4]; in the context of reanalysis,
the sensitivity coefficients are exploited to generate approxima-
tions of the response of a modified system, including approximate
reanalysis models and explicit approximations of the constraint
functions in terms of structural parameters [5]. Moreover, the
sensitivities are often required for assessing the effects on the
system response of uncertain structural parameters (e.g. material
or geometrical properties) ever present in structural engineering

problems [6]. Indeed, it is now widely recognized that a determi-
nistic treatment of input parameters may lead to unreliable
predictions of structural behavior. In this context, it is valuable
for design purposes to know the impact of each uncertain input
variable on the behavior of a structure.

The main dynamic excitations arising from natural phenomena,
such as earthquake ground motion, gusty winds or sea waves, are
commonly modeled as Gaussian stochastic processes for structural
analysis purposes. In the framework of Stochastic Mechanics,
several approaches have been proposed to cope with the challen-
ging problem of characterizing the random response of a struc-
tural system under stochastic excitation. In particular, it is well-
known that the random response is fully defined from a probabil-
istic point of view by the knowledge of its probability density
function (PDF). Moreover, if the system has a linear behavior and it
is forced by a Gaussian random process, the response is Gaussian
too. In this case, the probabilistic characterization of the stochastic
response can be performed either in the so-called time domain by
evaluating the mean-value vector and the correlation function
matrix, or in the so-called frequency domain through the knowl-
edge of the mean-value vector and the power spectral density
(PSD) function matrix (see e.g. [7,8]).

The expectations and covariances of the sensitivity coefficients
of the response of randomly excited structures have been earlier
evaluated by Socha [9] and Szopa [10]. More recently, Benfratello
et al. [11] proposed a time domain approach for evaluating the
sensitivity of the statistical moments of the response of structural
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systems under stationary Gaussian and non-Gaussian white input
processes. Bhattacharyya and Chakraborty [12] extended the Neu-
mann expansion method within the framework of Monte Carlo
simulation for sensitivity analysis of dynamical systems subjected to
ground acceleration modeled as a stationary random process.
Chaudhuri and Chakraborty [13] dealt with the evaluation of
response sensitivity in the frequency domain of structures sub-
jected to non-stationary seismic excitation. Cacciola et al. [14]
proposed a semi-analytical approach for determining the sensitivity
coefficients of the stochastic response of both classically and non-
classically damped structural systems subjected to stationary and
non-stationary stochastic Gaussian excitation. Marano et al. [15]
performed the stochastic sensitivity analysis of the response with
respect to uncertain soil parameters in the presence of a non-
stationary seismic excitation.

As stated by Jensen [16], the approaches for calculating the partial
derivatives of a performance measure with respect to the system
parameters can be classified into analytical, numerical and semi-
analytical. Analytical methods evaluate analytically the sensitivity
coefficients but are sometimes difficult to implement in a given
numerical method. Conversely, numerical approaches involve the
computation of the derivatives by the finite difference method so
that the implementation is very easy but the accuracy and the
computational costs are not competitive. Finally, the semi-analytical
approaches are based on the evaluation of the derivatives of response
quantities by an expansion of the response (e.g. first-order perturba-
tion, first-order Taylor expansion, etc.). It follows that they combine
the easiness of implementation of numerical approaches and effi-
ciency of analytical methods.

This study presents a novel semi-analytical approach for the
sensitivity analysis of the response of linear discretized structures
subjected to stationary multi-correlated Gaussian random excita-
tion. The main feature of the procedure is that it provides very
accurate approximate analytical expressions of the sensitivities of
the mean-value and PSD function of the stationary response. This
remarkable result is achieved by using the so-called rational series
expansion (RSE), recently proposed by the authors [17–19] as an
alternative explicit form of the Neumann series expansion of the
inverse of an invertible matrix with small rank-r modifications.
Indeed, the RSE allows to obtain approximate explicit expressions
of both the mean-value and PSD function of the response in terms
of the design parameters. Based on the knowledge of the analytical
relationships between the response quantities and the system
parameters, the sensitivities can be evaluated analytically via
direct differentiation. The proposed procedure is easy to imple-
ment in a given numerical method such as the finite element
method. It can be straightforwardly extended to investigate the
effects of uncertain parameters on the stationary response of
randomly excited structures. Furthermore, the procedure can also
be extended to the case of non-stationary excitation once the
stochastic analysis of the response is performed in the so-called
mixed time-frequency domain.

The objective of numerical results presented in the paper is
twofold. On one hand, the accuracy of the explicit sensitivities of
the probabilistic characteristics of the response is demonstrated.
On the other hand, when a large number of design variables are
involved, the usefulness of sensitivity information to improve the
computational efficiency of the RSE is shown.

The paper is organized as follows: the basic equations governing
the probabilistic characterization and sensitivity analysis of the
response of linear discretized structures under stationary multi-
correlated Gaussian stochastic excitation are recalled in Section 2;
Section 3 outlines the evaluation of approximate explicit expres-
sions of both the inverse of the stiffness matrix and the modal
frequency response function (FRF) matrix by means of the RSE; in
Section 4, explicit expressions of the sensitivities of the mean-value

and PSD function of the random response are derived; finally,
Section 5 presents numerical results concerning the sensitivity
analysis of a truss structure and a framed structure with tuned
mass damper under wind excitation modeled as a stationary multi-
correlated Gaussian random process; concluding remarks are stated
in the last section.

2. Problem formulation

2.1. Equations of motion

The design sensitivity analysis deals with the evaluation of the
change in the system response due to design parameter variations
in the neighborhood of prefixed values, called nominal parameter
values. Let r be the number of significant design parameters whose
influence on the response has to be assessed. The jth parameter, Pj,
is expressed as Pj ¼ P0;jð1þαjÞ where αj denotes the dimensionless
fluctuation around the nominal value P0;j. Hence, the nominal
configuration of the structure corresponds to the condition
αj ¼ α0;j ¼ 0 which yields Pj � P0;j, j¼ 1;2;…; r. In structural engi-
neering applications, the dimensionless fluctuations αj can be
reasonably assumed to satisfy the condition αj

�� ��o1, with the

symbol �j j denoting absolute value. Let, α¼ α1; α2; …; αr
� �T

be the r-order vector collecting the r dimensionless fluctuations αj

of the design parameters Pj; the apex T means transpose. In the
most general case, the mass, damping and stiffness matrices of the
structure and the response vectors should be considered as
functions of the design parameters. Based on this observation,
the equations of motion of a quiescent n�DOF linear structural
system subjected to a stationary multi-correlated Gaussian sto-
chastic process fðtÞ can be cast in the form:

MðαÞ €uðα; tÞþCðαÞ _uðα; tÞþKðαÞuðα; tÞ ¼ fðtÞ ð1Þ
where MðαÞ, CðαÞ and KðαÞ are the n� n mass, damping and
stiffness matrices of the structure, respectively; uðα; tÞ is the
stationary Gaussian vector process of displacements and a dot
over a variable denotes differentiation with respect to time t.
Notice that in the case of seismic excitation, if the mass matrix
depends on the design parameters Pj, the forcing vector shall
depend on the same parameters (see Appendix A).

Without loss of generality, the n� n order structural matrices
introduced above can be expressed as linear functions of the
dimensionless design parameters αj, i.e.

KðαÞ ¼K0þ ∑
rK

j ¼ 1
αjKj; MðαÞ ¼M0þ ∑

rK þ rM

j ¼ 1þ rK

αjMj;

CðαÞ ¼ C0þ ∑
r

j ¼ 1þ rK þ rM

αjCj; ð2a–cÞ

where

M0 ¼MðαÞ
��
α ¼ 0 ; Mj ¼

∂MðαÞ
∂αj

����
α ¼ 0

;

C0 ¼ CðαÞ
��
α ¼ 0; Cj ¼

∂CðαÞ
∂αj

����
α ¼ 0

;

K0 ¼KðαÞ
��
α ¼ 0; Kj ¼

∂KðαÞ
∂αj

����
α ¼ 0

: ð3a–fÞ

In the previous equations, M0, K0 and C0 denote the mass, stiffness
and damping matrices, respectively, pertaining to the nominal
configuration (where the design parameters are set equal to their
nominal values, i.e. α¼α0 ¼ 0) which are positive definite sym-
metric matrices of order n� n; furthermore, Mj, Kj and Cj are semi-
positive definite symmetric matrices of order n� n. Without loss of
generality, in Eq. (2) the fluctuations of the design parameters
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