Nuclear Instruments and Methods in Physics Research B xxx (2013) XXX—XXX

Contents lists available at SciVerse ScienceDirect o

Nuclear Instruments and Methods in Physics Research B |jawamows

journal homepage: www.elsevier.com/locate/nimb AR

Fast simulation of Proton Induced X-Ray Emission Tomography using CUDA
D.G. Beasley *, A.C. Marques, L.C. Alves, R.C. da Silva

Instituto Tecnoldgico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, E.N.10, 2686-953 Sacavém, Portugal
Centro de Fisica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal

ARTICLE INFO ABSTRACT

Article history:

Received 23 July 2012

Received in revised form 17 December 2012
Accepted 18 December 2012

Available online xxxx

A new 3D Proton Induced X-Ray Emission Tomography (PIXE-T) and Scanning Transmission lon Micros-
copy Tomography (STIM-T) simulation software has been developed in Java and uses NVIDIA™ Common
Unified Device Architecture (CUDA) to calculate the X-ray attenuation for large detector areas. A chal-
lenge with PIXE-T is to get sufficient counts while retaining a small beam spot size. Therefore a high geo-
metric efficiency is required. However, as the detector solid angle increases the calculations required for
accurate reconstruction of the data increase substantially. To overcome this limitation, the CUDA parallel

gf){]‘_;v ords: computing platform was used which enables general purpose programming of NVIDIA graphics process-
STIM ing units (GPUs) to perform computations traditionally handled by the central processing unit (CPU). For
Tomography simulation performance evaluation, the results of a CPU- and a CUDA-based simulation of a phantom are

CUDA presented. Furthermore, a comparison with the simulation code in the PIXE-Tomography reconstruction
software DISRA (A. Sakellariou, D.N. Jamieson, G.J.F. Legge, 2001) is also shown. Compared to a CPU
implementation, the CUDA based simulation is approximately 30x faster.

Simulation

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Proton Induced X-Ray Emission Tomography (PIXE-T) has been
in development for over 20 years [1] and has recently been per-
formed at the Instituto Tecnol6gico e Nuclear, Instituto Superior
Técnico (ITN-IST). Combined with Scanning Transmission Ion
Microscopy-Tomography (STIM-T) and Rutherford Backscattering
Spectroscopy, it can produce quantitative 3D elemental maps. Bio-
logical samples have been analysed [2,3] although the success has
been limited for trace elements due to the significant counts re-
quired to reconstruct accurate tomograms, which is also hindered
by the sample sensitivity to beam radiation damage [4]. Multiple
detectors can be used to increase the geometric efficiency. How-
ever, as the detector solid angle increases the calculations required
to accurately reconstruct the data increase substantially. While Fil-
tered Back Projection (FBP) is suitable for STIM-T, iterative tech-
niques are required to reconstruct elements from PIXE-T data
due to the X-ray attenuation and the non-linear X-ray production.
The most complete software is the Discrete Image Space Recon-
struction Algorithm (DISRA) developed by Sakellariou [5], which
simulates PIXE-T and the X-ray attenuation by segmenting the
X-ray detector, and determining the attenuation from each voxel
to every segment (detector pixel) for every projection and for each

* Corresponding author at: Instituto Tecnoldgico e Nuclear, Instituto Superior
Técnico, Universidade Técnica de Lisboa, E.N.10, 2686-953 Sacavém, Portugal. Tel.:
+351 966011864.

E-mail address: dgbeasley@itn.pt (D.G. Beasley).

0168-583X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.nimb.2012.12.053

of the characteristic X-ray of interest. It is a computationally
demanding simulation and this is performed through several
iterations.

To improve planning of experiments (e.g. estimating count
rate), and to accelerate the reconstruction of data, a new PIXE-T
and STIM-T simulation program has been written in Java and
CUDA. Common Unified Device Architecture (CUDA) is developed
by NVIDIA™ for enabling general purpose computing of graphics
processing units (GPGPUs) in order to take advantage of the mas-
sive parallel computing power of NVIDIA™ graphics cards. GPUs
contain many more cores than central computer units (CPUs),
although of a more simple type. For certain calculations GPUs
can increase the speed considerably by performing a large number
of tasks at the same time. In recent years many GPGPU implemen-
tations of X-ray-casting have been developed for use with com-
puted tomography (CT) [6,7]. PIXE-T is an emission-based
tomographic technique with a cone-beam geometry, similar to
Positron Emission Tomography (PET) and Single Photon Emission
Computer Tomography (SPECT) [8]. The requirements in terms of
memory storage and parallelising differ substantially and are dis-
cussed below.

There are several methods, called projectors, for calculating the
attenuation between two points in a voxel-based phantom. Varia-
tions of Siddons algorithm [9] are often used with CPUs, where the
length of the intersection of the ray through each voxel is calcu-
lated. However this is not an efficient method using GPUs due to
the use of conditions [10]. The trilinear projection method is more
computer intensive using CPUs but can be implemented on GPUs

(2013), http://dx.doi.org/10.1016/j.nimb.2012.12.053

Please cite this article in press as: D.G. Beasley et al., Fast simulation of Proton Induced X-Ray Emission Tomography using CUDA, Nucl. Instr. Meth. B



http://dx.doi.org/10.1016/j.nimb.2012.12.053
mailto:dgbeasley@itn.pt
http://dx.doi.org/10.1016/j.nimb.2012.12.053
http://www.sciencedirect.com/science/journal/0168583X
http://www.elsevier.com/locate/nimb
http://dx.doi.org/10.1016/j.nimb.2012.12.053

2 D.G. Beasley et al./Nuclear Instruments and Methods in Physics Research B xxx (2013) xXX—-XXX

o - Texture Values
4 - Calculated points
along ray

Detector Pixel Width=6

STIM detector

Sample

Detector distance

‘.\\ I |
DN
Wy

Proton Beam

Fig. 1. Illustration showing the X-ray attenuation path (ray) of X-rays induced by the proton beam and the simulated segmentation of the detector. Inset: Illustration of
interpolation of CUDA texture memory along the ray, showing the boundaries of the voxels, the texture value positions and X-ray path and positions where the attenuation is
calculated. The contribution from the surrounding texture values are weighted by the distance from the calculated value.

very efficiently. Graphics cards are designed specifically to calcu-
late how images are displayed and are constructed with specific
types of memory to accelerate this process. Texture memory is a
type of memory that stores images as 4D vectors. Arrays of data
are mapped to texture memory (therefore assigning values to
points in this image space) and values can then be retrieved by
sampling from this memory through interpolation, i.e. the value
is derived from the weighted average of the surrounding mapped
points, as illustrated in Fig. 1 in 2D form. It is very fast to access
from the GPU and hence trilinear projection methods are very effi-
ciently implemented. An example of trilinear interpolation projec-
tion called “line-of-sight” is provided by the CUDA Software
Development Kit (SDK) in C++ and can be adapted for CT [6]. How-
ever, this is for producing an image from an external point source;
for PIXE the X-rays are generated from within each voxel and, un-
like CT, the sum of the projected image from each voxel for multi-
ple characteristic energies is calculated.

A CUDA kernel, computer code compiled and executed on the
graphics card, was written for calculating the attenuation correc-
tion factors, i.e. the attenuation paths from every voxel to every
segment of a detector for every characteristic energy of interest.
The JCuda library [11] was used to allow CUDA to be executed by
the Java-written simulation.

2. Methods
2.1. Description of the simulation program

2.1.1. Overview

Apart from the X-ray attenuation calculations, the program is
written primarily for simplicity and is not optimised for speed.
As a simulation without considering X-ray attenuation takes an or-
der of 2-3 s to perform, it is not deemed necessary.

Presented with a graphical user interface (GUI), the user can
choose a phantom from a list or select real data from which a basic
phantom is created based upon a FBP reconstruction. STIM projec-
tion data is used to detect the edge of the sample in order to create
a mask that is applied to reconstructed data. A CPU or CUDA
simulation can be selected via the GUI. For elements present in

the sample, cross-section look-up tables are generated for X-ray
production, proton stopping powers and X-ray attenuation data.
These are read in from an Excel spread sheet book that can be eas-
ily modified. In the current form, the data tables used are the same
as the DISRA package with the addition of stopping powers up-
dated from SRIM [12]. These include elemental and compound
stopping powers for proton energies below 1 MeV. Due to the
tomography set-up at ITN, for many samples it is expected the
residual proton energy will be below 1 MeV where chemical bond-
ing may be affective. The compound stopping powers can be used
for a-priori matrix composition, i.e. the bulk of the sample if it can-
not be detected using PIXE (e.g. in light element matrixes).

The X-ray transmission values per pm are calculated for every
voxel and stored in a 3D array. Before simulating a projection,
the array is used to determine the total X-ray attenuation values
for each X-ray line in every voxel. The edges of the sample are used
to trim the 3D X-ray transmission arrays and to remove empty
space, which in the case of CUDA is done before transferring the
data to the graphics card in the form of CUDA arrays. Although
CUDA offers massively parallel computing, the largest bottleneck
is the transferring of data to and from the graphics cards memory
(device) to the computer (host). Reducing the size of the CUDA ar-
rays reduces transfer times considerably as well as the interpola-
tion time.

2.1.2. CPU implementation

For the CPU implementation a very simple (and not very accu-
rate) method written in Java is employed for X-ray attenuation
calculations. Prior to the simulation, the incremental paths of the
X-ray for each projection are stored in arrays. The ray is traced in
steps equal to the width of the voxels, and the attenuation accu-
mulated until the edge of the phantom.

2.1.3. CUDA implementation

For an X-ray of a particular energy, the total X-ray yield, Y(x,y)
per scanned pixel with given coordinates x and y is given by the
sum of the contributions along the length of the beam in the
z-direction:

(2013), http://dx.doi.org/10.1016/j.nimb.2012.12.053

Please cite this article in press as: D.G. Beasley et al., Fast simulation of Proton Induced X-Ray Emission Tomography using CUDA, Nucl. Instr. Meth. B



http://dx.doi.org/10.1016/j.nimb.2012.12.053

Download English Version:

https://daneshyari.com/en/article/8042608

Download Persian Version:

https://daneshyari.com/article/8042608

Daneshyari.com


https://daneshyari.com/en/article/8042608
https://daneshyari.com/article/8042608
https://daneshyari.com/

