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a b s t r a c t

MD simulations of recoil processes, following the scattering of X-rays or neutrons are performed. At small
energies (<10 eV) the recoil can induce intrinsic localized modes and linear local modes associated with
them. In ionic crystals the frequencies of these modes are located in the gaps of the phonon spectrum,
being essentially dependent on long-range forces. In metals, as a result of the screening of atomic inter-
actions by free electrons, their frequencies can be positioned above the phonon spectrum. The MD sim-
ulations of vibrations in Ni and Nb confirm this prediction. If the recoil energy exceeds tens of eV, the
vacancies and interstitials can be formed. In fcc lattices a recoil in (110) direction can produce a vacancy
and a crowdion, while in the case of a recoil in (100) and in (111) directions a bi-vacancy and a crowdion
can be formed.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The goal of the present communication is to study the motion of
atoms (ions) in crystals, caused by the recoil processes following
the scattering of X-rays or neutrons. We are considering the case
of moderate recoil energy (0.1 eV < ER < 200 eV). In this range of
energy one can observe the creation of intrinsic localized modes
(ILMs) [1–3] and the linear local modes (LLMs) associated with
them [4], if ER < 10 eV and the creation of defects (vacancies, inter-
stitials, crowdions), if ER > 10 eV. In the case of ionic crystals we
suppose that in the given range of energies, the creation of elec-
tron–hole pairs and excitons in the scattering processes can be
neglected.

In Refs. [5–7] we introduced a method of calculations of ILMs
and used it for the MD simulations to study nonlinear dynamics
of Ni and Nb. Below we report the results of the investigation
and show that in these metals ILMs and the LLMs stemming from
them can be positioned above the phonon spectrum. We also dis-
cuss the recoil-induced ILMs [8] and the radiation defects near the
low-energy threshold in the alkali-halide crystals NaI and KCl. In
these crystals the usual cluster methods of the MD simulations
of ILMs may become unsatisfactory unless in the case when the
size of the clusters is very large (�106 atoms or more). Indeed, at
the energies ER < 10 eV (ILM region), the dynamics of atoms (ions)
in ionic crystals is governed by both linear and non-linear forces.

The latter forces are usually short-range ones, while the linear
forces in non-metallic systems, as a rule, are essentially long-range
(LR) ones. The situation differs from the impact-induced defect for-
mation at ER > 10 eV, when the acting forces are essentially short-
range ones. We have developed a method which allows the LR
forces to be taken into account. In this method, LR forces are in-
cluded in the calculations via the phonon Green’s functions for
the infinite crystal, while the anharmonic forces of a localized exci-
tation are considered explicitly within a finite cluster. As in 3D lat-
tices, both the actual Green’s functions and anharmonic forces are
localized and the numerical solution of the equations of motion is
possible.

2. ILMs and LLMs in 3D lattices

2.1. Self-consistent theory of ILMs and LLMs

An ILM corresponds to a solution uLðtÞ ¼ An cosðxLtÞ þ O (the
term O describes small higher-order harmonics). The amplitudes
An and the frequency xL can be found from a self-consistency con-
sideration [5–7] solving the following linear equation for the small
variations (an) of amplitudes:

€an ¼ �
X

n0
ðDnn0 þwnn0 Þan0 ð1Þ

Here Dnn0 is the dynamical matrix of the harmonic lattice, wnn0 is
the perturbation caused by the ILM. The solution is
an=a0 ¼ ~Gn0=~G00, where
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~GðxÞ ¼ I � Gð0ÞðxÞw
� ��1

GðxÞ ð2Þ

G(x) is the Green’s function of phonons in a spectral
representation.

A small variation of the ILM satisfies the condition
an ¼ f � An sin xLt, where f is a small parameter (note the phase
shift p/2 with respect to the ILM). However, this condition does
not apply to other variations. Therefore the values of wnn0 for the
ILM and for the perturbed phonons are different. In Ref. [4], we
have shown that the latter perturbation can lead to the localiza-
tion, producing linear local modes (LLMs). These modes cause the
modulation of ILMs (see Fig. 1). Equations for wnn0 are

wnn0 ¼ 2hsin2 xLt@2Vanh=@un@un0 i; ILM ð3Þ

wnn0 ¼ h@2Vanh=@un@un0 i þ kAnAn0 ; LLM; ð4Þ

where k is the Lagrange multiplier which should be found from the
orthogonality condition of the LLM under consideration. Eqs. (1)–(4)
present a set of self-consistent equations, which can be solved
numerically by using, e.g. the iteration procedure [4–7].

The presented theory was applied for the calculation of ILMs
and LLMs in a monoatomic chain with quartic anharmonicity and
for alkali halide crystals. The MD simulations of ILMs and LLMs
were also performed for these systems [4–7]. The results of both
considerations are in very good mutual agreement. Recently, the
LLMs, predicted by us, have been experimentally observed in Ref.
[9].

2.2. ILMs and LLMs above the phonon spectrum

In the numerical studies of ILMs, different pair potentials, such
as Lennard–Jones, Born–Mayer–Coulomb, Toda, and Morse poten-
tials, have been used. All these potentials show a strong softening
with an increasing vibrational amplitude. The ILMs, which have
been found in these simulations, always split down from the opti-
cal band(s) into the phonon gap, if there is one. (see Refs. [10,11],
where ILMs in alkali halide crystals have been calculated). How-
ever, a recent inelastic neutron scattering investigation of the
vibrational excitations in metallic uranium (a-U) showed some de-

gree of localization near the top of the phonon spectrum at ele-
vated temperatures [12]. For such a phenomenon to occur, the
pair potentials in this metal must be very different from the ones
describing alkali halide crystals. As the free electrons at the Fermi
surface provide an essential contribution to the screening of the
ion–ion interaction in metals, there is no a priori reason to expect
the anharmonicities of these two very different systems to be
similar.

We have applied the above-presented theory to study ILMs in
metallic nickel and niobium. We have used the embedded atom
model (EAM), allowing one to take the screening effects into ac-
count. Our findings show that ILMs and LLMs may be observed
above the phonon spectrum if [7]

�j ¼ 3k4
�k2=4k2

3 > 1 ð5Þ

Here k3 and k4 are the cubic and quartic anharmonic springs,
�k2 ¼ Mv2=r2

0 is the mean elastic spring in the bulk, v is the longitu-
dinal velocity of sound, M is the mass of atoms, r0 is the lattice con-
stant. We have used the potentials given in [13,14] and have found
that in Ni and Nb this condition is fulfilled. This allowed us to
conclude that in both these metals one can observe ILMs with
the frequencies above the phonon spectrum. This conclusion was
verified by the MD simulations of ILMs in these crystals. In Fig. 1
the time dependence of the vibrations in metallic Ni at the recoil
energy ER = 0.5 eV is presented, while in Fig. 2 the dependence of
the ILM frequency on the amplitude of the central bond is given.
In Fig. 2 the main oscillations correspond to the ILM; the periodic
modulation of the amplitude of the ILM is caused by the LLM.
Frequencies of both, ILM and LLM exceed the top phonon
frequency.

3. ILMs in 3D lattices, long-range forces included

The vibrational dynamics of dielectrics can usually be described
in the adiabatic approximation with the potential energy of the lat-
tice being the sum of all pair potentials. In this approximation, the
displacement of the nth atom (ion) is described by the equation

unðtÞ ¼ uð0Þn ðtÞ þ
Z t

0
ds
X

n0
Gnn0 ðt � sÞFanh

n0 ðsÞðMnMn0 Þ�1=2
; ð6Þ

Fig. 1. Even ILM in Ni: oscillations of two atomic bonds: central (solid line) and the
third one from the centre (dashed line). Modulation of amplitudes is caused by the
LLM.

Fig. 2. The dependence of the frequency of the even ILM in Ni on the amplitude of
vibrations of the central bond.
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