
Contents lists available at SciVerse ScienceDirect

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier.com/locate/nimb

An update on *in situ* cosmogenic ¹⁴C analysis at ETH Zürich

K. Hippe^{a,*}, F. Kober^b, L. Wacker^c, S.M. Fahrni^{c,d}, S. Ivy-Ochs^c, N. Akçar^e, C. Schlüchter^e, R. Wieler^a

^a Institute of Geochemistry and Petrology, ETH Zürich, Zürich CH-8092, Switzerland

^b Institute of Geology, ETH Zürich, Zürich CH-8092, Switzerland

^c Institute for Particle Physics, ETH Zürich, Zürich CH-8093, Switzerland

^d Department of Chemistry and Biochemistry, University of Bern, Bern CH-3012, Switzerland

^e Institute of Geological Sciences, University of Bern, Bern CH-3012, Switzerland

ARTICLE INFO

Article history: Received 21 June 2011 Received in revised form 16 March 2012 Available online 24 July 2012

Keywords: In situ ¹⁴C Cosmogenic nuclide Data reduction

ABSTRACT

We present the improved performance of the modified *in situ* cosmogenic ¹⁴C extraction system at ETH Zürich. Samples are now processed faster (2 days in total) and are measured with a high analytical precision of usually <2% using the gas ion source of the MICADAS AMS facility. Measurements of the PP-4 standard sample show a good reproducibility and consistency with published values. Procedural blanks are very low at currently ~4.0 × 10⁴ ¹⁴C atoms. Analyses of samples from a ~300 y old rock avalanche prove that we can successfully apply *in situ* ¹⁴C exposure dating to very young surfaces. Additionally, we present a modified calculation scheme for *in situ* ¹⁴C concentrations which differs from that used for conventional radiocarbon dating. This new approach explicitly accounts for the characteristics of *in situ* ¹⁴C production.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Terrestrial cosmogenic nuclides are widely applied in Quaternary geochronology and Earth surface process studies. With its short half-life (5730 y) *in situ* cosmogenic ¹⁴C is of special interest, as it is particularly sensitive to fast and/or recent landscape changes that cannot be detected by the long-lived radionuclides (¹⁰Be, ²⁶Al, ³⁶Cl). Combined with a long-lived isotope, *in situ* ¹⁴C provides the opportunity to reconstruct short episodes of surfaces [1] or to determine the timing of sediment storage in a fluvial system [2]. However, the often low *in situ* ¹⁴C concentrations in terrestrial rocks and the contamination by atmospheric ¹⁴C make routine *in situ* ¹⁴C analyses difficult. With the development of *in situ* ¹⁴C extraction systems based on high-temperature sample heating or melting, significant progress has been made during the past decade [3–7].

The *in situ* ¹⁴C extraction system at ETH Zürich has been first described by Hippe et al. [4]. Since then the system has been routinely running and further improved. Most importantly, the blank ¹⁴C contribution has been strongly reduced. By now a good database of system blanks, quartz and standard sample analyses has been acquired that allows an evaluation of the long-term analytical performance. Here, we present a summary of these data and

discuss the analytical reproducibility and accuracy. We further describe our revised and more efficient analytical protocol and propose a new approach in data reduction that accounts for the differences between *in situ* produced ¹⁴C and conventional radiocarbon. Finally, the capability of *in situ* ¹⁴C for exposure dating of very young surfaces will be shown and discussed on ¹⁴C data obtained for a ~300 y old rock avalanche.

2. Methods

2.1. Modifications of the in situ ¹⁴C extraction system

Three main features characterize the ETH in situ ¹⁴C extraction system: (1) the all-metal tubing system, (2) the omission of sample graphitization, and (3) the extraction furnace heated by electron bombardment. The latter allows the extraction of ¹⁴C from a quartz sample without using a flux agent. We argue that the extraction without flux and the lack of a graphitization step leads to less ¹⁴C contamination and thus lower ¹⁴C blanks than systems and procedures using those other techniques. While the system setup in general has remained unchanged, the extraction furnace has seen minor, yet important changes. The tantalum tube inside the furnace (see Fig. 1 in [4]) was replaced by a tungsten tube, which is physically more stable at high temperatures. Furthermore, the control grid bars were re-shaped providing the originally flat bars with a V-profile to prevent constant bending. Both modifications significantly increased the reliability of the extraction furnace.

^{*} Corresponding author. Address: Clausiusstrasse 25, NW C 85, Zürich 8092, Switzerland. Tel.: +41 44 632 47 97; fax: +41 44 632 11 79.

E-mail address: hippe@erdw.ethz.ch (K. Hippe).

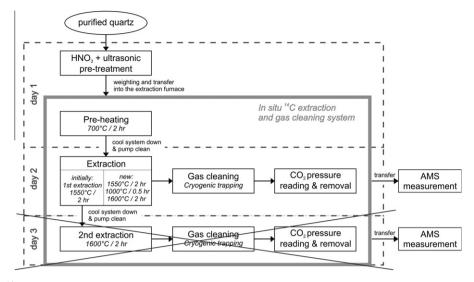


Fig. 1. Illustration of *in situ*¹⁴C analysis as performed at ETH Zürich. The initial 3-day procedure has been recently shortened by including the former second extraction step into an expanded total extraction step. Sample processing can now be accomplished within 2 days.

2.2. Current analytical procedures

About 5 g of quartz are used for an in situ ¹⁴C analysis. Once loaded into the extraction furnace, the guartz sample is pre-heated at \sim 700 °C (calibrated with a pyrometer) for 2 h under a flow of ultra-high-purity (UHP) O₂ to remove atmospheric contamination. The temperature of 700 °C was chosen based on stepped-heating experiments showing that 500 °C is sufficient to remove atmospheric ¹⁴C [3] but that the *in situ* component is not released below 900 °C [4]. This pre-heating step is crucial because the amount of contaminant ¹⁴C can be similar or even higher than the *in situ* ¹⁴C amount. Next, the furnace is cooled to room temperature and the large amounts of water and other gases released during preheating are pumped off (usually overnight) until the system pressure is about 10^{-7} – 10^{-6} Pa. For *in situ* ¹⁴C extraction the sample is then heated under a UHP O₂-flow to 1550–1600 °C for 2×2 h. The quartz is not melted under these conditions but slight sintering was observed for a few samples. Following extraction, the gas is cleaned and taken off for AMS analysis as previously described [4].

In our initial procedure, two high-temperature heating steps of 2 h duration each were made to guarantee complete extraction of *in situ* ¹⁴C from the quartz. The second extraction step was performed the next day after the furnace had been cooled to room temperature overnight. In our modified procedure, samples are heated at 1550–1600 °C for 2 h, cooled to 1000 °C for 30 min, and heated again for 2 h at 1550–1600 °C. With the additional 1000 °C step the quartz crosses the tridymite-crystobalite transformation temperature at 1470 °C twice more. The associated transformation of the quartz crystal lattice may help to promote the release of any remaining *in situ* ¹⁴C.

The entire extraction (incl. gas cleaning) now requires ${\sim}10\,h$ and is accomplished in 1 day. Fig. 1 compares present and previous sample processing procedures.

2.3. AMS measurement

The purified CO₂ gas can be measured without graphitization at the MICADAS AMS system at ETH using the gas ion source [8–11]. The current setup of the gas feeding system allows CO₂ amounts equivalent to ~45 µg carbon to be released into the ion source. Typically, our samples yield sufficient CO₂ (~5–30 µg carbon) to be measured without further CO₂-addition. Procedural blanks, however, yield only little CO₂ (1–2 µg carbon) and therefore require the addition of 14 C-free CO₂ to provide sufficient gas for AMS analysis (Table 1). Samples containing more than 40 µg carbon are split into separate breakseal tubes before being taken off the extraction system.

The ${}^{14}C/{}^{12}C$ ratios obtained from a quartz sample are usually significantly higher than ratios measured, e.g., for modern organic samples. This creates a good signal-to-background ratio and allows a high analytical precision. An example of a ${}^{14}C$ measurement from a quartz sample on the MICADAS system is given in Fig. 2. Due to the small sample size (5.1 µg carbon) the ${}^{14}C/{}^{12}C$ ratio is \sim 7 times the modern ratio and is measured with a counting error lower than 1%.

2.4. Data processing

AMS radiocarbon data are commonly reported as $F^{14}C$ (or F_m), the measured fraction modern carbon, normalized to a $\delta^{13}C$ of $-25\%_{eVPDB}$ and AD 1950 [12,13]. Radiocarbon ages are typically calculated based on this value. The same procedure has so far also been applied to calculate concentrations of *in situ* ¹⁴C in quartz. However, the main purpose of a $\delta^{13}C$ correction is to compensate for natural isotopic fractionation in biochemical processes. The normalization to AD 1950 accounts for the anthropogenic release of 'bomb' ¹⁴C in the atmosphere. Both effects are not relevant for the production of *in situ* ¹⁴C in quartz. As such, we argue that normalization to these parameters is not correct and changes the 'true' ¹⁴C/¹²C ratio of the sample.

Because raw data for *in situ* ¹⁴C analyses are often obtained from the AMS laboratories in the same way as classical radiocarbon data, we will describe in the following how we determine the absolute ('true') ¹⁴C/¹²C ratio from reported F¹⁴C and δ^{13} C values. Additionally, as an easier way, we calculate the absolute ¹⁴C/¹²C ratio directly from the measured raw ¹⁴C/¹²C data. We propose that this procedure should be used for *in situ* ¹⁴C data reduction. Below, the subscripts S and OX refer to sample and the oxalic acid standard OX-I, respectively.

The F¹⁴C is defined as the ratio of the sample activity to the standard activity [14], which is equivalent to the ratio of the sample ¹⁴C/¹²C (or ¹⁴C/¹³C) ratio to the standard ¹⁴C/¹²C (or ¹⁴C/¹³C) ratio [12,13]. By definition, the standard ¹⁴C/¹²C ratio is 95% of the specific activity of the international standard oxalic acid (OX-I), in AD 1950 and normalized to δ^{13} C = –19%_{eVPDB} [14]. To calculate today's absolute ¹⁴C/¹²C ratio of a sample, the δ^{13} C fractionation correction included in the F¹⁴C_s is undone again using the mea-

Download English Version:

https://daneshyari.com/en/article/8043083

Download Persian Version:

https://daneshyari.com/article/8043083

Daneshyari.com