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a b s t r a c t

Classical calculations of the atomic processes started in 1911 with famous Rutherford’s evaluation of the
differential cross section for a particles scattered on foil atoms [1]. The success of these calculations was
soon overshadowed by the rise of Quantum Mechanics in 1925 and its triumphal success in describing
processes at the atomic and subatomic levels. It was generally recognized that the classical approach
should be inadequate and it was neglected until 1953, when the famous paper by Gregory Wannier
appeared, in which the threshold law for the single ionization cross section behaviour by electron impact
was derived. All later calculations and experimental studies confirmed the law derived by purely classical
theory. The next step was taken by Ian Percival and collaborators in 60s, who developed a general clas-
sical three-body computer code, which was used by many researchers in evaluating various atomic pro-
cesses like ionization, excitation, detachment, dissociation, etc. Another approach was pursued by Michal
Gryzinski from Warsaw, who started a far reaching programme for treating atomic particles and pro-
cesses as purely classical objects [2]. Though often criticized for overestimating the domain of the clas-
sical theory, results of his group were able to match many experimental data. Belgrade group was
pursuing the classical approach using both analytical and numerical calculations, studying a number of
atomic collisions, in particular near-threshold processes. Riga group, lead by Modris Gailitis [3], contrib-
uted considerably to the field, as it was done by Valentin Ostrovsky and coworkers from Sanct Peters-
bourg, who developed powerful analytical methods within purely classical mechanics [4].

We shall make an overview of these approaches and show some of the remarkable results, which were
subsequently confirmed by semiclassical and quantum mechanical calculations, as well as by the exper-
imental evidence. Finally we discuss the theoretical and epistemological background of the classical cal-
culations and explain why these turned out so successful, despite the essentially quantum nature of the
atomic and subatomic systems.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The term ‘‘atomic system’’ appears a paradigm of contradictio in
adjecto. The original Greek meaning ‘‘indivisible’’ implies nonexis-
tence of the internal structure. Strictly speaking, from epistemolog-
ical point of view, structure and indivisibility need not be in
contradiction. An electron is structureless (according to out present
day inference) and indivisible (though not indestructible), but a
proton, for example, is considered a system with internal structure,
but yet indivisible. Its constituents, quarks, cannot be extracted
from proton, though a host of various ‘‘elementary particles’’ may
be extracted in the high-energy processes. In this respect quarks
resemble more Anaxagoras’ concept of loiqai, which designated
probably share rather than part [5].

In modern Greek, to mention this too, atom means an individual
in everyday life, since the Latin term individuum means exactly the
same ‘‘indivisible’’ (in-dividuum).

Year 1911 marked two important advances in our understanding
the microscopic world: (i) Ernest Rutherford (1871–1937) and
Johannes (Hans) Geiger (1882–1945), by shooting a metal foil by a
particles [19], discovered the fact that atoms possessed the structure
and (ii) Rutherford evaluated the angle-differential cross section for
this collisional processes [1], which demonstrated that atoms have
planetary structure, with nucleus and electrons moving around.
Rutherford formula was obtained by evaluating trajectories of the
impinging a particles and reads [6]:

dr
dX
¼ Z1Z2e2

4E sin2
#=2

 !2
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In the case of identical particles, the formula becomes

dr
dX
¼ Z1Z2e2
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where h is Planck constant, v is the mutual velocity, and k ¼ 1 intro-
duces the exchange term. The latter appears peculiar to the quan-
tum mechanics and cannot be obtained within the classical
theory. It is important here to notice that it vanishes in the limit
of small velocity, due to the rapid oscillations. This appears contrary
to the standard passing from the quantum mechanical effects to the
classical ones. As we shall see later on, Coulomb interaction appears
unique in this context, since it is essentially the long-range force.
Generally one may divide all potentials into three main classes:

VðrÞ ¼ b=r; long-range potential; ð4Þ
VðrÞ ¼ b=rn; n > 1; medium-range pot: ð5Þ
VðrÞ ¼ crge�ar ; a > 0; short-range pot: ð6Þ

Power-law potentials are based on the concept of flux (of force
lines) and are considered classical interactions, whereas exponen-
tial interactions are typically quantum mechanical and are based
on the notion of exchange of intermediatory (boson) particles, as
the case with strong interaction appears. Potentials with n = 2 in
(5) acquire a special status among the medium-range interaction.
The same holds for the linear harmonic oscillator potential
(n = �2), which belongs also to the class of ‘‘classical interaction’’,
as we shall see later on. As pointed out by many authors, one
may only surmise to what extent the discovery of the nucleus
might have been delayed, had it not been for the coincidence of
the classical and Quantum mechanical cross sections. On the other
hand the very appearance of the Quantum Mechanics might have
been speeded up, for the success of the Old quantum theory relied
heavily on the special properties of the n = 1, �2 potentials, as we
shall discuss later on.

2. Classical vs. quantum mechanical

2.1. The classical approximation

With the advent of Quantum Mechanics (QM) it became clear
when classical approach may be justified [7]. At the same time the-
oreticians learned why the previous calculations, like those in
celestial mechanics, for instance, were successful. Since the inven-
tion of QM the physical theory separated into two branches: Clas-
sical Mechanics (CM) and QM. Based on the underlying physical
ontology of the Wave mechanics, the criterion for applying CM
was formulated in terms of the rate of change of the relevant de
Broglie wavelength (we use atomic unites �h; e;me ¼ 1):

dk
dr
� 2p; ð7Þ

In the case of binary encounters, the most frequent case in atomic
collisions, with the reduced mass l, for the potentials from (4),
(5), we have:

(i) Coulomb interaction of charges Z1, Z2

r �� 1
8ljZ1Z2j

; Z1Z2 < 0; ð8Þ

(ii) n = 2 (monopole-dipole interaction)

b�� 1
2l

; b < 0; ð9Þ

(iii) n > 2

rn�2 �� 8ljbj
n

; b < 0; ð10Þ

Exponential interaction potentials turn out essentially beyond
the classical approach [20].

2.2. Correspondence identities

Bohr’s Correspondence principle defined the bridge, both onto-
logical and epistemological, between the semiclassical and quan-
tum mechanical domains. It states that for the large quantum
numbers semiclassical and quantum mechanical results should
merge as one goes to the infinite number limit. For the large prin-
cipal quantum number n and reasonably large angular momentum
quantum number l one may speak of electron trajectory and it was
on this assumption de Broglie postulated the wave nature of
microparticles, notably electrons. But is there situation where
semiclassical and quantum mechanical results coincide for all val-
ues of quantum numbers? The answer is positive: for two interac-
tion potentials rm; m ¼ �1;2, Coulombic and harmonic oscillator
cases, ignoring the spin variable (which is essentially a quantum
mechanical quantity), energy spectra coincide [8]. Considering that
these potentials describe arguably two the most important interac-
tions in physics, this coincidence can not be overestimated, both
from the methodological and historical points of view. It explains
why Planck’s quantum physics and Bohr’s quantum theory were
so successful, before Quantum Mechanics was invented. Corre-
spondence identities appear thus a remarkable contribution due
to Ian Percival and coworkers to the classical versus quantum
mechanical physics issue. It explains albeit implicitly, why the
classical methods turn out so successful in many physical situa-
tions, in particular in describing near threshold processes, as we
shall see below.

3. Classical methods

In the classical approach all variables of a system appear contin-
uous. Therefore, strictly speaking, ab initio classical calculations in
atomic physics are not possible. Atomic parameters are taken
either from the experimental data or from the quantum mechani-
cal calculations. Never-the-less it is legitimate to calculate differ-
ential cross sections over the continuous variables [9]. If two
subsystems A and B collide, and interaction between their constit-
uent may be described by pairwise potential terms, Newton’s
equations of motion may be written as:

mi
d2ri

dt2 ¼ �
X
i–j

riV ijðrijÞ; ð11Þ

Eq. (11) is not amenable to exact solution, except in the most
simple cases, and one usually makes various approximations.
One of the most employed is the so-called binary encounter approx-
imation, when the target electrons are treated as free particles,
with nucleus and other electrons as spectators. The most popular
method is statistical one, with relevant system parameters chosen
at random, within the so-called Monte Carlo method, whose name
speaks for itself [9]. Orbit integrations combined with Monte Carlo
method, have been employed for a number of processes, like ioni-
zation, charge transfer, breakup processes etc. Particularly fertile
calculations have been carried out in physical chemistry what is
to be expected, since chemical molecules stand somewhere be-
tween atoms and macroscopic particles, belonging to the meso-
scopic realm. With the advent of powerful digital computers
Monte Carlo calculations have become very popular. Random num-
ber are generated by various algorithms, but in fact they are not
random in he strict sense, but quasi-random, since it is quantum
processes, with their intrinsic indeterminacy which can generate
truly random numbers.
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