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a b s t r a c t

This article presents a new class of computational methods, known as dimensional decomposition
methods, for calculating stochastic sensitivities of mechanical systems with respect to probability
distribution parameters. These methods involve a hierarchical decomposition of a multivariate response
function in terms of variables with increasing dimensions and score functions associated with probability
distribution of a random input. The proposed decomposition facilitates univariate and bivariate
approximations of stochastic sensitivitymeasures, lower-dimensional numerical integrations or Lagrange
interpolations, and Monte Carlo simulation. Both the probabilistic response and its sensitivities can be
estimated from a single stochastic analysis, without requiring performance function gradients. Numerical
results indicate that the decomposition methods developed provide accurate and computationally
efficient estimates of sensitivities of statistical moments or reliability, including stochastic design of
mechanical systems. Future effort includes extending these decomposition methods to account for the
performance function parameters in sensitivity analysis.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Sensitivity analysis provides an important insight about com-
plex model behavior [1,2] so that one can make informed
decisions on minimizing the variability of a system [3], or opti-
mizing a system’s performance with an acceptable risk [4]. For
estimating the derivative or sensitivity1 of a general probabilistic
response, there are three principal classes of methods or analyses.
The finite-difference method [5] involves repeated stochastic analy-
ses for nominal and perturbed values of system parameters, and
then invoking forward, central, or other differentiation schemes
to approximate their partial derivatives. This method is cumber-
some and often expensive, if not prohibitive, because evaluating
probabilistic response for each system parameter, which consti-
tutes a complete stochastic analysis, is already a computationally
demanding task. The two remainingmethods, the infinitesimal per-
turbation analysis [6,7] and the score functionmethod [8], have been
mostly viewed as competing methods, where both performance
and sensitivities can be obtained from a single stochastic simu-
lation. However, there are additional requirements of regularity
conditions, in particular smoothness of the performance function
or the probability measure [9]. For the infinitesimal perturbation
analysis, the probability measure is fixed, and the derivative of a
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performance function is taken, assuming that the differential and
integral operators are interchangeable. The score functionmethod,
which involves probability measure that continuously varies with
respect to a design parameter, also requires a somewhat similar
interchange of differentiation and integration, but in many prac-
tical examples, interchange in the score function method holds in
a much wider range than that in infinitesimal perturbation analy-
sis. Nonetheless, bothmethods, when valid, are typically employed
in conjunction with the direct Monte Carlo simulation, a premise
well-suited to stochastic optimization of discrete event systems.
Unfortunately, in mechanical design optimization, where stochas-
tic response and sensitivity analyses are required at each design
iteration, even a single Monte Carlo simulation is impractical, as
each deterministic trial of the simulation may require expensive
finite-element or other numerical calculations. This is the princi-
pal reason why neither the infinitesimal perturbation analysis nor
the score function method have found their way in to the design
optimization of mechanical systems.
The direct differentiation method, commonly used in deter-

ministic sensitivity analysis [10], provides an attractive alter-
native to the finite-difference method for calculating stochastic
sensitivities. In conjunctionwith the first-order reliability method,
Liu andDer Kiureghian [11] and their similarwork has significantly
contributed to the development of such methods for obtaining
reliability sensitivities. The direct differentiation method, also
capable of generating both reliability and its sensitivities from a
single stochastic analysis, is particularly effective in solving finite-
element-based reliability problems, when (1) the most probable
point can be efficiently located and (2) a linear approximation of
the performance function at that point is adequate. Therefore, the
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direct differentiation method inherits high efficiency of the first-
order reliability method, but also its limitations. In contrast, the
three sensitivity methods described in the preceding are indepen-
dent of underlying stochastic analysis.
This article presents a new class of computational methods,

known as dimensional decomposition methods, for calculating
stochastic sensitivities of mechanical systems with respect to
probability distribution parameters. The idea of dimensional de-
composition of a multivariate function, originally developed by
the author’s group for statistical moment [12,13] and reliabil-
ity [14] analyses, has been extended to stochastic sensitivity anal-
ysis, which is the focus of the current paper. Section 2 describes
a unified probabilistic response and sensitivity, and derives score
functions associated with a number of probability distributions.
Section 3 presents the dimensional decompositionmethod for cal-
culating the probabilistic sensitivities, using either the numeri-
cal integration or the simulation method and score functions. The
computational effort required by the decompositionmethod is also
discussed. Four numerical examples illustrate the accuracy, com-
putational efficiency, and usefulness of the sensitivity method in
Section 4. Section 5 states the limitations of the proposed method.
Finally, conclusions are drawn in Section 6.

2. Probabilistic response and sensitivity

Let (Ω,F ) be a measurable space, where Ω is a sample space
and F is a σ -field on Ω . Defined over (Ω,F ), consider a family
{Pθ : F → [0, 1]} of probability measures, where θ = {θ1,
. . . , θM}

T
∈ RM is an M-dimensional vector of deterministic

parameters and RM is an M-dimensional, real, vector space. In
otherwords, a sample pointω ∈ Ω obeys the probability law Pθ(F)
for any event F ∈ F and θ ∈ RM , so that the probability triple
(Ω,F , Pθ) depends on θ.
Let {X = {X1, . . . , XN}T : (Ω,F ) → (RN ,BN)} with BN

as the Borel σ -field on RN denote a family of RN -valued input
random vector, which describes statistical uncertainties in loads,
material properties, and geometry of a mechanical system. The
probability law of X is completely defined by a family of joint
probability density functions {fX (x; θ), x ∈ RN , θ ∈ RM} that are
associatedwith probabilitymeasures {Pθ, θ ∈ RM}. Let y(X), a real-
valued, measurable transformation on (Ω,F ), define a relevant
performance function of a mechanical system. It is assumed that
y : (RN ,BN)→ (R,B) is not an explicit function of θ, although y
implicitly depends on θ via the probability law of X . The objective
of stochastic sensitivity analysis is to obtain the partial derivatives
of a probabilistic characteristic of y(X)with respect to a parameter
θi, i = 1, . . . ,M , given a reasonably arbitrary probability law of X .

2.1. Statistical moments and reliability

Denote by Lq(Ω,F , Pθ) a collection of real-valued random
variables including y(X), which is defined on (Ω,F , Pθ) such that
E[|yq(X)|] < ∞, where q ≥ 1 is an integer and Eθ represents
the expectation operator with respect to the probability measure
{Pθ, θ ∈ RM}. If y(X) is in Lq(Ω,F , Pθ), then its qth moment,
defined by the multifold integral

mq(θ) := Eθ

[
yq(X)

]
:=

∫
RN
yq(x)fX (x; θ)dx; q = 1, 2, . . . , (1)

exists and is finite. A similar integral appears in time-invariant
reliability analysis, which entails calculating the failure probability

PF (θ) := Pθ [X ∈ ΩF ] =
∫

RN
IΩF (x)fX (x; θ)dx := Eθ

[
IΩF (X)

]
, (2)

where ΩF := {x : y(x) < 0} is the failure set for component
reliability analysis; and ΩF := {x : ∪Kk=1 y

(k)(x) < 0} and

ΩF := {x : ∩Kk=1 y
(k)(x) < 0} are the failure sets for series-system

and parallel-system reliability analyses, respectively, with y(k)(x)
representing the kth out of K performance functions, and

IΩF (x) :=
{
1, x ∈ ΩF
0, x ∈ Ω \ΩF

; x ∈ RN (3)

is an indicator function. Therefore, expressions of both integrals or
expectations in Eqs. (1) and (2) can be consolidated into a generic
probabilistic response

h(θ) = Eθ [g(X)] :=
∫

RN
g(x)fX (x; θ)dx, (4)

where h(θ) and g(x) are either mq(θ) and yq(x), respectively, for
statistical moment analysis or PF (θ) and IΩF (x), respectively, for
reliability analysis.

2.2. Sensitivity analysis by score functions

Consider a distribution parameter θi, i = 1, . . . ,M , and
suppose that the derivative of a generic probabilistic response h(θ),
which is either the statistical moment of a mechanical response
or the reliability of a mechanical system, with respect to θi is
sought. For such sensitivity analysis, the following assumptions are
required [8].
1. The probability density function fX (x; θ) is continuous. Discrete
distributions having jumps at a set of points, or a mixture of
continuous and discrete distributions, can be treated similarly,
but will not be discussed here.

2. The parameter θi ∈ Θi ⊂ R, i = 1, . . . ,M , whereΘi is an open
interval on R.

3. The partial derivative ∂ fX (x; θ)/∂θi exists and is finite for all x
and θi ∈ Θi ⊂ R. In addition, h(θ) is a differentiable function of
θ ∈ RM .

4. There exists a Lebesgue integrable dominating function r(x)
such that∣∣∣∣g(x) ∂ fX (x; θ)∂θi

∣∣∣∣ ≤ r(x) (5)

for all θ ∈ RM .

The assumptions 1–4 are known as the regularity conditions.
Taking the partial derivative of both sides of Eq. (4) with respect

to θi gives

∂h(θ)
∂θi
=

∂

∂θi

∫
RN
g(x)fX (x; θ)dx. (6)

By invoking assumption 4 and the Lebesgue dominated conver-
gence theorem [15], the differential and integral operators can be
interchanged, yielding
∂h(θ)
∂θi

=

∫
RN
g(x)

∂ fX (x; θ)
∂θi

dx

=

∫
RN
g(x)

∂ ln fX (x; θ)
∂θi

fX (x; θ)dx

= Eθ

[
g(X)

∂ ln fX (X; θ)
∂θi

]
; i = 1, . . . ,M, (7)

provided fX (x; θ) 6= 0. Define

s(1)θi (x; θ) :=
∂ ln fX (x; θ)

∂θi
, (8)

which is known as the first-order score function for the parameter
θi [8]. Therefore, the first-order sensitivity of h(θ) can be expressed
by

∂h(θ)
∂θi
= Eθ

[
g(X)s(1)θi (X; θ)

]
; i = 1, . . . ,M. (9)
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