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a b s t r a c t

This article reports the results of a parametric study on the fracture behavior of a crack in functionally
graded materials. The study involves stochastic descriptions of particle and void numbers; location, size,
and orientation characteristics; and constituent elastic properties; a concurrent multiscale model for
calculating crack-driving forces; and Monte Carlo simulation for fracture reliability analysis. A level-
cut, inhomogeneous, filtered Poisson field describes the statistically inhomogeneous microstructures of
graded composites. Numerical results for an edge-cracked, graded specimen show that the particle shape
and orientation for the same phase volume fractions have negligible effects on fracture reliability, even for
graded materials with a high modular ratio. However, voids and the particle gradation parameter, if they
exist or increase, can significantly raise the probability of fracture initiation. Limited crack-propagation
simulations in graded composites containing brittle particles reveal that the fracture toughness of the
matrix material can significantly influence the likelihood or the extent of crack growth.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Assessing mechanical reliability of functionally graded materi-
als (FGMs), which possess spatially varying material compositions
and microstructures, mandates a fundamental understanding of
their deformation and fracture behavior [1,2]. Most existing stud-
ies on FGM fracture [3–6] entail calculating crack-driving forces
employing smoothly varying material properties that are derived
from empirical rules of mixtures, classical bounds, or microme-
chanical homogenization [7,8]. However, an FGM is a multiphase,
heterogeneous material with possibly distinct properties of indi-
vidual phases. Depending on the crack-tip location and FGM mi-
crostructure, the resulting crack-driving forces can be markedly
different when a significant mismatch exists in the properties of
constituent material phases. Therefore, using homogenized prop-
erties in a macroscale analysis may lead to inaccurate or inad-
equate measures of crack-driving forces and fracture behavior
of FGMs. The calculation of crack-driving forces becomes further
complicated when accounting for a random microstructure, in-
cluding spatial and random distributions of sizes, shapes, and ori-
entations of constituent phases [9–12]. Therefore, in general, a
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stochastic fracture analysis incorporating random microstructural
details, particularly in the crack-tip region, is required for high-
fidelity reliability analysis [13].
A valuable insight can be gained by investigating howmicrome-

chanical parameters, such as the phase volume fraction, location,
size, shape, and orientation of particles; porosity; and the frac-
ture toughness properties of constituents, influence the fracture
behavior of a particle-matrix FGM. An elaborate computational
model, e.g., a microscale model that employs a discrete particle-
matrix system in the entire domain of an FGM, can be invoked
for such a parametric study. However, a microscale model, al-
though capable of furnishing highly accurate solutions, constitutes
a brute-force approach, and is therefore computationally expen-
sive, if not prohibitive. An attractive alternative is multiscale anal-
ysis, where effective material properties are employed whenever
possible, thereby solving a fracture problem of interest not only
accurately, but also economically. For example, a concurrent mul-
tiscale model [13], recently developed by the authors, involves
stochastic description of an FGM microstructure and constituent
material properties, a two-scale algorithm including microscale
and macroscale analyses for determining crack-driving forces, and
theMonte Carlo simulation for fracture reliability analysis. Numer-
ical results indicate that the concurrent multiscale model is suffi-
ciently accurate, gives fracture probability solutions very close to
those generated from the microscale model, and can reduce the
computational effort of the latter model by more than a factor of
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two. Therefore, a detailed parametric study can be efficiently con-
ducted using the concurrent multiscale model – the principal fo-
cus of this work. In general, the crack-driving forces experienced
by an FGM can be very complex in practical scenarios involving
a variety of combinations of microstructural parameters and con-
stituent material properties. A clear understanding of the relation-
ship between the microstructure and fracture behavior is vital to
the successful application of FGM to the design of mechanical and
structural components.
This paper presents the results of a parametric study on fracture

behavior of two-dimensional, functionally graded composites.
The study involves: (1) stochastic descriptions of particle and
void numbers; location, size, and orientation characteristics; and
constituent elastic properties; (2) a concurrent multiscale model
for determining crack-driving forces under mixed-mode loading;
and (3) Monte Carlo simulation for uncertainty propagation and
fracture reliability analysis. Section 2 describes a generic fracture
problem and a concurrent multiscale model for calculating various
fracture response characteristics of interest, defines the random
input parameters, and discusses crack-driving forces and fracture
reliability. Section 3 describes the Monte Carlo simulation method
for calculating statistical moments and probability densities
of crack-driving forces, leading to the probability of fracture
initiation. A numerical example comprising eight cases of FGM
microstructure and three cases of fracture toughness ofmatrix, and
the resultant fracture response, is presented in Section 4. Section 5
provides conclusions from this work and discusses future work.

2. Stochastic fracture mechanics

Consider a three-phase, functionally graded, heterogeneous
solid with a rectilinear crack, domain D ⊂ R2, and a
schematic illustration of its microstructure, as shown in Fig. 1. The
microstructure in general includes three distinct material phases:
one phase as particles, another phase as the matrix material,
and the remaining phase as voids. The particle, matrix, and void
subdomains are represented by Dp, Dm, and Dv , respectively,
where Dp ∪ Dm ∪ Dv = D and Dp ∩ Dm = Dm ∩ Dv = Dp ∩
Dv = ∅. A three-phase FGM, henceforth described as a two-phase,
porous FGM or simply a porous FGM, can be reduced to a two-
phase, non-porous FGM by discarding the void constituent. The
particle andmatrix represent isotropic and linear-elasticmaterials,
and the elasticity tensors of individual phases, denoted by C (i), are
expressed as [14]

C (i) :=
νiEi

(1+ νi)(1− 2νi)
1⊗ 1+

Ei
(1+ νi)

I; i = p,m, (1)

where the symbol⊗ denotes the tensor product; Ei and νi are the
elastic modulus and Poisson’s ratio, respectively, of phase i; and 1
and I are second- and fourth-rank identity tensors, respectively.
The superscripts or subscripts i = p and i = m refer to
particle and matrix, respectively. At a spatial point x ∈ D in the
macroscopic length scale, let φp(x), φm(x), and φv(x) denote the
volume fractions of particle, matrix, and void, respectively. Each
volume fraction is bounded between 0 and 1 and satisfies the
constraint:φp(x)+φm(x)+φv(x) = 1. The crack faces are traction-
free, and there is perfect bonding between the material phases.
Consider a linear-elastic solid with small displacements and

strains. The equilibrium equation and boundary conditions for the
quasi-static problem are

∇ · σ + b = 0 in Dp ∪Dm or D \Dv and (2)

σ · n = t̄ on Γt (natural boundary conditions)
u = ū on Γu (essential boundary conditions),

(3)

respectively, where u : D → R2 is the displacement vector;
σ = C(x) : ε is the Cauchy stress tensor with C(x) and ε :=

Fig. 1. A crack in a three-phase functionally graded composite. (Note:D = domain
of the entire solid,Dp = particle subdomain,Dm =matrix subdomain,Dv = void
subdomain.)

(1/2)
(
∇ +∇

T) u denoting the spatially variant elasticity tensor
and strain tensor, respectively; n is a unit outward normal to the
boundary Γ of the solid; Γt and Γu are two disjoint portions of
the boundary Γ , where the traction vector t̄ and displacement ū
are prescribed; ∇

T
:= {∂/∂x1, ∂/∂x2} is the vector of gradient

operators; and symbols ‘‘.’’ and ‘‘:’’ denote dot product and tensor
contraction, respectively.
The variational or weak form of Eqs. (2) and (3) is∫

D

(C(x) : ε) : δεdD −
∫

D

b · δudD −
∫
Γt

t̄ · δudΓ

−

∑
xK∈Γu

f (xK ) · δu(xK )−
∑
xK∈Γu

δf (xK ) · [u(xK )− ū(xK )] = 0,

(4)

where f T(xK ) is the vector of reaction forces at a constrained node
K on Γu, and δ denotes the variation operator. The discretization
of the weak form, Eq. (4), depends on how the elasticity tensor
C(x) is defined, i.e., how the elastic properties of constituent
material phases and their gradation characteristics are described.
In the following section, a concurrentmultiscalemodel is described
to approximate C(x). Nonetheless, a numerical method, e.g.,
the finite-element method (FEM), is generally required to solve
the discretized weak form, providing various response fields of
interest.

2.1. Concurrent multiscale model

The FGM microstructure in Fig. 1 contains discontinuities in
material properties at the interfaces between the matrix and
particles. There exist two approaches with respect to defining
the material property for fracture analysis of an FGM cracked
structure. One approach involves stress analysis using effective
material properties, often smooth and continuous, in the entire
domain of the solid. This approach is referred to as macroscale
analysis. The other approach, referred to as microscale analysis,
entails stress analysis that is solely based on the exact but discrete
material property information derived from the knowledge of
explicit particle locations and their geometry. The concurrent
multiscale model employed in this work includes both continuous
and discrete material representations and requires a combined
micromechanical and macromechanical stress analysis.
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