Accepted Manuscript

Ion assisted deposition of Silica-Titania multilayer optical filter for beam steering of Nd:YAG laser

Mukesh Kumar, Neelam Kumari, Amit L. Sharma, Vinod Karar

PII: S0042-207X(17)31868-7

DOI: 10.1016/j.vacuum.2018.05.057

Reference: VAC 8020

To appear in: Vacuum

Received Date: 15 December 2017

Revised Date: 1 May 2018
Accepted Date: 31 May 2018

Please cite this article as: Kumar M, Kumari N, Sharma AL, Karar V, Ion assisted deposition of Silica-Titania multilayer optical filter for beam steering of Nd:YAG laser, *Vacuum* (2018), doi: 10.1016/i.vacuum.2018.05.057.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Ion Assisted Deposition of Silica-Titania Multilayer Optical Filter for Beam Steering of

Nd:YAG Laser

Mukesh Kumar ^{a, b}*, Neelam Kumari ^a, Amit L Sharma ^a, Vinod Karar ^{a, b}

^a CSIR-Central Scientific Instruments Organisation, Sector 30 C, Chandigarh, 160030, India

^b Academy of Scientific & Innovative Research (AcSIR), CSIO Campus, Sector 30 C, Chandigarh, 160030, India

* Corresponding author E-mail Address: mukeshk@csio.res.in

Abstract- In the present study, a multilayer reflective optical filter consisting of 24 alternate layers of SiO₂ and TiO₂

was designed and fabricated on BK7 glass substrate using Ion Assisted electron beam Deposition (IAD) technique. The

spectroscopic characterization of the filter was carried out in Vis-NIR range with Universal Measurement Accessory

(UMA) to measure its optical performance at normal and oblique angles of incidences. The measurements confirmed

the optical peak reflectance of more than 99.98% at design wavelength of Nd:YAG laser centred at 1064 nm. The

tuning of refractive indices of the constituent layers during deposition resulted in a Full-Width at Half-Maximum

(FWHM) bandwidth of 330 nm of the fabricated filter which enables its use at any angle of incidences between 0 - 60°

for manipulating the laser beam. Qualitative assessment of the mechanical stability of the coated filter with respect to its

adhesion and abrasion resistance was carried out in accordance with MIL-F-48616 and MIL-E-12397 respectively. The

achieved optical performance of the coated filter is suited for beam steering and folding of high power laser beams for

metal cutting, diamond processing and in other laser based material processing instruments.

Keywords: Optical Filters, Vacuum Deposition, Thin Films, Laser Instrumentation

1. Introduction

Laser filters are optical filters designed to transmit only a certain wavelength or range of wavelengths. They are

usually used to isolate certain wavelengths by reflecting or absorbing unwanted wavelengths. Laser mirrors are the high

reflection coatings designed for laser beam manipulation through beam steering and folding. Dielectric multilayer

Download English Version:

https://daneshyari.com/en/article/8043985

Download Persian Version:

https://daneshyari.com/article/8043985

<u>Daneshyari.com</u>