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a b s t r a c t

A procedure, formulated in the space of the load processes, is described for estimating the reliability of
structures subject to multi-parameter time-varying loading. For most realistic reliability problems the
load process space is of low order. As a result, the required multidimensional integration is significantly
simplified. The proposed approach also has well defined steps. As a result, there is increased transparency
and reduced problems of integration instability and non-convergence. Both loads and resistances are
described in terms of random variable parameters and time dependent structural resistances can be
considered. Numerical examples are given to illustrate the proposed method. Example applications are
given for a fixed base rigid-plastic portal frame subjected to time dependent loads and resistances. Linear
and non-linear limit state equations and Normal and non-Normal distribution of the random variables
are considered and compared, in some cases, to the results evaluated using Monte Carlo simulation.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In structural reliability analysis many structural problems are
time-dependent, usually because they are subjected to loads
and/or resistances that may change with time. The estimation of
the time-dependent failure probability under time varying loads
and resistances is of particular interest because the additional
failure probability accumulated over time usually is much greater
than that when the structure was first commissioned. The
computational difficulties are compounded due to the randomness
of the loads as well as the resistances.
One way to handle a time varying load is to include an auxiliary

random variable in time-invariant second moment reliability
analysis to represent a maximum (or minimum), and then use
the accepted methods for time-invariant reliability analysis [1].
For linear elastic structures where the principle of superposition
is valid, a simulation technique can be used to obtain the life
time maximum load effect. If all the loading processes can be
approximated by sparse Poisson pulses, the ‘load-coincidence
approach’ may be used to approximate the load effect and hence
the rate of failure (or outcrossing rate) using estimates of failure
probabilities obtained from time-invariant methods [2].
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As described previously, it is possible to formulate the time-
dependent reliability problem in the load process space [3–6].
In this formulation, the problem is defined within a coordinate
system for which each axis corresponds one to one to each of
the load processes acting on the structure. The load process space
approach has the advantage that the problem is reduced to a
small number of random variables (or random processes) in the
load space. The determination of the probability of failure using
the conventional form of this approach is reviewed below. This is
followed by a description of the proposed procedure and then by
some examples to illustrate the new procedure.

2. Structural reliability formulation in the load process space

Consider an m-dimensional load process space consisting of
the loads q acting on the structure. The loads may be represented
at any point in time by the vector Q(t). Fig. 1 shows a two-
dimensional example. Typically, the space q will be of low
order (i.e. m is small) for most civil engineering structures
since typically there are only a few load components acting on
a structure. Following convention, throughout capitals denote
random quantities, lower case deterministic quantities. Also, in
the following context, ‘‘time-variant’’ refers to the case where
the system is subject to one or more random processes such as
stochastic loads, whereas ‘‘time-dependent’’ refers to situations
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Fig. 1. Two-dimensional load-process space showing realizations of the probabilis-
tic description of the limit state function.

where the system is changingwith time such as due tomechanisms
such as deterioration. [The distinction is also referred to as ‘‘fast’’
and ‘‘slow’’ time aspects respectively.]
The resistance R of the structure to loading may be different for

various load combinations, as indicated schematically with Modes
1–3 in Fig. 1. Usually the structural resistance is composed of
member resistances and other factors. Let these be represented by
the random vector X. Then it follows that R = R(X). Further, each
component of R corresponds directly to the relevant component
of q. Since X is a random vector, R will be random also, with
joint probability density function (pdf) fR(). Further, the customary
‘‘limit state function’’ G(x) = 0 in structural reliability theory
is now equivalent to a probabilistic boundary in the load process
space, shown as ‘‘realization of limit states’’ in Fig. 1. These
realizations also show that the structural resistance possesses
uncertainty (or variability) when plotted in the load process space.
It follows directly from the representation shown in Fig. 1 that

for operations in the load process space a natural choice is polar
coordinates. With this choice the probability of structural failure
may be given as an integral over the radial directions A = a [5,6]:

pf =
∫
unit sphere

fA(a)
[∫
S
pf (s|a).fS|A(s|a)ds

]
da (1)

where S is a (scalar) radial distance representing the (conditional)
structural strength in the radial direction, with conditional
probability density function fS|A(). The term pf (s|a) is a conditional
failure probability given that the structural resistance is S =
s > 0 and A is a random unit vector of direction cosines,
having a probability density function given by fA(). The relationship
between R and S is given by R = S.A + c where c is the
point selected as the origin. For convenience of exposition, but not
generally, c may be taken as the origin. In the exposition here,
to avoid unnecessary complexity in writing the equations, time
dependence is taken as implicit.
Tomake Eq. (1) operational the conditional probability of failure

pf (s|a) over the period (0, tL) is required to be estimated for each
radial direction. This can be approximated from the outcrossing
rate ν and the initial failure probability pf (0) with the use of the
conventional upper bound based on the Poisson nature of the
outcrossings for high reliability systems [7]:

pf (s|a) ≤ pf (0, s|a)+ {1− exp[−ν(s|a).tL]}

≈ pf (0, s|a)+ ν.tL (2)

where pf (0, s|a) is the failure probability at time t = 0, ν is the rate
at which the vector process Q(t) ‘‘crosses-out’’ (i.e. leaves) of the
safe domain and tL is the design life. Note that pf (s|a) is a function
of the distance s along the radial direction.

The other term required to make Eq. (1) operational is the
variation of structural strength fS|A(), also a function of the distance
s along the radial direction. Most previous research efforts to find
appropriate expressions for the variation of structural strength
fS|A() have required significant simplifications, including [5]:

1. The limit state functions are assumed independent of the
realizations of the load processes (this assumption also applies
to most alternative methods)

2. The outcrossing rate ν is assumed to be independent of tL, i.e. in
Eq. (2) there is no correlation between the items in the [] term
for each a (the so-called ‘‘ensemble’’ approximation).

Since structural systems usually are high reliability systems, an
outcrossing event typically is a very rare event and for this situation
neither of these simplifications is particularly important. However,
for item 2 it has been shown that the approximation becomes
worse as the uncertainty in R increases and as R becomes small
relative to Q [8,9]. Typically, this will be the case as a structure
deteriorates. Hence assumption (2) above becomes less plausible
and needs attention, particularly for deteriorating structures.

3. Proposed new formulation

The approach considered herein is to revert to a more
fundamental form of Eq. (1), with integration over the resistance
R kept until the probability for a given realisation of R has been
estimated. The approach is to consider different realizations of the
structural limit state function(s) and then to determine levels of
structural resistance that have equal probabilities of occurrence. It
is convenient to view the sets of realizations as forming ‘‘contours’’
of R, each of equal probability and each expressed through a value
s of the radial scalar S. The probability of limit state violation
(i.e. failure), weighted over all possible ‘‘probabilities’’ fS(s) of
occurrence of the limit states, may then be expressed as

pf =
∫
S

[
G(s) = 0

∫
pf (a|s)fA(a)da

]
fS(s)ds (3)

where the term G(s) = 0 represents the (critical) limit state
function (i.e. the contour) corresponding to S = s. In the []
term, pf (a|s) is obtained from Eq. (2) with the different argument
simply reflecting the order of integration. The term fA() is as before,
representing the probability density function for the random unit
vector of direction cosines A.
Expression (3) has the theoretical advantage that time depen-

dence of R, or structural deterioration, is now governed by s and
G(s) = 0 and the location of its contours in q space. Evidently, it
now becomes clear that structural deterioration (or structural en-
hancement) will affect the location of the contours of G(s) = 0 in
q space.
For structural deterioration the general tendency is for R and

hence the contours to move closer to the origin with the passage
of time. The deterioration process generally will have a degree
of randomness about it, and for spatially varying systems that
randomness will be different in different parts of the structure.
The approach proposed herein is that this can be accounted for by
considering different points in time at which the deterioration is
estimated (as a random variable) and hence the structural capacity
is estimated. It is assumed that the structural deterioration process
is smooth in time and there are no ‘shocks’ or discontinuities.
Hence, the precise location of the estimation points in time is not
critical. It follows that (3) also should be written as conditional on
time (i.e. it is time-dependent):

pf |t =
∫
S

[
G(s, t) = 0

∫
pf (a|s)fA(a)da

]
fS(s)ds (4)
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