Accepted Manuscript

Facile synthesis of mesoporous MnO₂ nanosheet and microflower with efficient photocatalytic activities for organic dyes

Li Xiao, Wanting Sun, Xiaoliang Zhou, Zhiao Cai, Fang Hu

PII: S0042-207X(18)30580-3

DOI: 10.1016/j.vacuum.2018.07.045

Reference: VAC 8136

To appear in: Vacuum

Received Date: 12 April 2018 Revised Date: 25 July 2018 Accepted Date: 28 July 2018

Please cite this article as: Xiao L, Sun W, Zhou X, Cai Z, Hu F, Facile synthesis of mesoporous MnO_2 nanosheet and microflower with efficient photocatalytic activities for organic dyes, *Vacuum* (2018), doi: 10.1016/j.vacuum.2018.07.045.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Facile synthesis of mesoporous MnO₂ nanosheet and microflower

with efficient photocatalytic activities for organic dyes

Li Xiao*, Wanting Sun, Xiaoliang Zhou, Zhiao Cai, Fang Hu

School of Materials Science and Engineering, Shenyang University of Technology,

Shenyang 110870, China

Abstract

MnO₂ nanosheets and microflowers are prepared by a facile one-step

hydrothermal method with a KMnO₄-Na₂SO₄ aqueous solution system in this paper.

Photocatalytic properties of the as-prepared products for different organic dyes are

investigated under ultraviolet light and visible light irradiation at room temperature.

The MnO₂ nanostructures with mesoporous structures exhibit enhanced photocatalytic

performance under UV light, the degradation efficiency up to 91.1% within 30 min

for methylene blue and 89.8% for methyl orange within 120 min. Moreover, the

possible mechanism of photocatalytic degradation for MB was proposed. MnO(OH)

existing in the product provides more 'OH during the degradation process, as well as

influences the band gap of the product, which enhanced the separation of the

photo-induced electron-hole pairs, thereby improved photocatalytic activity of MnO₂

nanostructure. The results reveal that the as-prepared MnO₂ nanostructures might have

a potential application for organic contaminants degradation in water purification

field.

Keywords: manganese dioxide; nanostructures; solvothermal synthesis;

photocatalysts.

*Corresponding author.

Download English Version:

https://daneshyari.com/en/article/8044031

Download Persian Version:

https://daneshyari.com/article/8044031

<u>Daneshyari.com</u>