## **Accepted Manuscript**

Application of dual radio frequency inductive coupled plasma into CVD diamond growth

Jia-jun Li, Bin Li, Yong-gang Zuo, Hao Liu, Yang Bai, He-wei Yuan, Zhen-rui Li, Kai Xu, Guang-chao Chen

VACUUM

Light James Later and British Boxes

Park a read British British Boxes

British Britis

PII: S0042-207X(18)30465-2

DOI: 10.1016/j.vacuum.2018.04.054

Reference: VAC 7959

To appear in: Vacuum

Received Date: 28 March 2018
Revised Date: 26 April 2018
Accepted Date: 30 April 2018

Please cite this article as: Li J-j, Li B, Zuo Y-g, Liu H, Bai Y, Yuan H-w, Li Z-r, Xu K, Chen G-c, Application of dual radio frequency inductive coupled plasma into CVD diamond growth, *Vacuum* (2018), doi: 10.1016/j.vacuum.2018.04.054.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Application of Dual Radio Frequency Inductive Coupled Plasma into CVD Diamond Growth

Jia-jun Li<sup>a</sup>, Bin Li<sup>b</sup>, Yong-gang Zuo<sup>a</sup>, Hao Liu<sup>a</sup>, Yang Bai<sup>a</sup>, He-wei Yuan<sup>a</sup>, Zhen-rui Li<sup>a</sup>, Kai Xu<sup>a</sup>,

Guang-chao Chen a, \*

<sup>a</sup> College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of

Sciences, Beijing 100049, P. R. China

<sup>b</sup> School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing,

Beijing 100083, P. R. China

Corresponding author.

Email address: gcchen@ucas.ac.cn (G. C. Chen)

Abstract

Diamond films have been deposited by a tandem type of radio frequency inductive coupled plasma

jet source with the maximum deposition time of 150 hours. The morphology, impurity and crystal

structure of the deposited films were characterized. By controlling the feed gas composition, nano- and

micro-crystal diamond films were deposited on silicon substrates without any metal impurity detected,

and the single crystal diamond film was deposited on a diamond substrate with regular crystal lattice

structure. Plasma diagnosed by optical emission spectra revealed that this plasma jet source possessed of

the high values of the electron temperature (averaged at 2.2eV) and the plasma density (averaged at

 $4.0 \times 10^{16}$ /cm<sup>3</sup>), as well as the stable plasma composition fitting for the diamond growth.

**Keywords** 

Diamond; Chemical vapor deposition; Dual radio frequency; Plasma characterization; Crystal growth

Diamond produced by chemical vapor deposition (CVD) has showed a wide range of potential

1

## Download English Version:

## https://daneshyari.com/en/article/8044081

Download Persian Version:

https://daneshyari.com/article/8044081

<u>Daneshyari.com</u>