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a  b  s  t  r  a  c  t

Reducing  the  motion-direction  stiffness  of  compliant  mechanisms  reduces  their  actuation  effort  and
simplifies  associated  static  balancing  mechanisms.  This  work  introduces  a flexure  type  called  lattice
flexures  and  evaluates  some  of  their  fundamental  properties.  Lattice  flexures  have  a  reduced  bending
stiffness  when  compared  to  traditional  rectangular-section  blade  flexures  of  similar  size.  The  motion-
direction  bending  stiffness  of two  lattice flexure  types,  called  X-type  and  V-type,  are  analytically  derived,
corroborated  with finite  element  analysis,  and  validated  with  measurements  of physical  prototypes.  The
lattice  flexure  has  the potential  to reduce  the  bending  stiffness  of some  compliant  mechanisms  by  60–80%,
as  demonstrated  in  devices  manufactured  using  3D printing  technologies.  It  is  shown  that  some  lattice
flexures  exhibit  a  torsional/bending  stiffness  ratio  as  much  as  1.7  times  higher  than  an  equal  aspect-ratio
blade  flexure,  and  a transverse  bending/motion-direction  bending  stiffness  ratio  up  to  6.5  times  higher
than  an  equal  aspect-ratio  blade  flexure.

© 2016  Elsevier  Inc.  All  rights  reserved.

1. Introduction

This paper introduces the lattice flexure as a means to reduce the
motion-direction rotational stiffness of compliant mechanisms. A
compliant mechanism obtains its motion from the deflection of its
constituent members. This eliminates sliding contact of surfaces,
avoiding friction and subsequent wear, and leading to higher per-
formance [1]. Because of the strain energy associated with bending
the flexible members, compliant mechanisms often have higher
actuation effort compared to traditional mechanisms [2]. Static bal-
ancing is one way of reducing this actuation energy [3–8]. Static
balancing functions by introducing balancing elements that store
and release energy as the mechanism is actuated. Because the net
change in energy stored by the mechanism is small, the actuation
effort is reduced. However, stiffer mechanisms require that more
strain energy be stored by the balancing element [9]. By reducing
the initial mechanism stiffness, simpler balancing elements can be
used.

The stiffness of a flexure is governed by its material, boundary
conditions, and geometry [1]. This work will consider the stiffness
of an arbitrary material with elastic linear stiffness (i.e. constant
Young’s modulus in the elastic range). The boundary conditions are
that of a cantilever beam subject to an end moment load. Therefore,
the aspect of beam stiffness to be examined is beam geometry.
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The conventional blade (or leaf-spring) flexure design is that of
a prismatic rectangular-section beam [10] shown in Fig. 2a. Much
work has been done studying this kind of flexure to gain greater
insight into its non-linear deflection and stiffness [11]. Changing the
beam length, width, or thickness will result in a change in stiffness.
The bending stiffness of a cantilever beam subject to a moment load
is kb = EI/L [12]. E is the Young’s Modulus, I is the second moment
of area, which for rectangular sections is given by bh3/12. L, b, and
h are the length, width, and thickness of the flexure, respectively.

Decreasing a flexure’s thickness can be a straightforward and
efficient way of decreasing the bending stiffness. The lower bound
of thickness is generally dictated by the available materials (stock
sizes) and manufacturing processes or other design constraints. For
example, in 3D printing, a process such as electron beam melting
may be able to reliably print features no smaller than 1.0 mm  thick
[13]. Flexure width is limited in a similar way, with the addition
that the flexure stability (its ability to withstand off-axis loads)
decreases as the width decreases. Flexure length is often limited
by mechanism envelope. Thus a flexure designer may arrive at the
practical geometric limits of a flexure but still be unsatisfied with
its performance [14]. The lattice flexure is introduced as one way  of
addressing this issue. This can be important in applications where
it is necessary to reduce actuation effort while maintaining compa-
rable stiffness in off-axis directions (such as in space applications
where actuation effort can be proportional to actuator size, which
can be proportional to actuator mass).

Flexures are important elements in many mechanical systems
[15–17]. Different types of flexures have been the focus of recent
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Fig. 1. A 3D printed titanium cross-axis flexural pivot with an early lattice flexure
design.

studies, including cross-axis flexure pivots [18], cartwheel flexures
[19], trapezoidal flexures [20], and others [21]. Methods for mod-
eling and design of flexures include the pseudo-rigid-body model
[22,23], FACT [24], screw theory [25], matrix methods [26], and
analytic methods paired with finite element analysis [10]. These
methods differ in accuracy and complexity, but all are meant to
aid the designer in arriving at a suitable configuration of flexures.
Common concerns in flexure design include stiffness [17], stress
and fatigue life [1], and off-axis (non motion-direction) stiffness
[19].

In this work we introduce the lattice flexure, a new flexure type
that has an envelope similar to a blade flexure but has dramatically
reduced motion-direction bending stiffness and an increased ratio
of support-direction to motion-direction bending stiffness. This
reduced stiffness lowers the required actuation effort and simpli-
fies the design of any static balancing system incorporating a lattice
flexure. Lattice flexures have significantly lower mass while main-
taining good off-axis stiffness. Fig. 1 shows an early lattice flexure
design in a 3D-printed titanium cross-axis flexural pivot. While this
introductory paper cannot exhaustively investigate every aspect of
lattice flexure behavior, some investigation of its bending and tor-
sional stiffness properties is presented. The improved performance
is countered by increased manufacturing complexity. Advances in
additive manufacturing and make monolithic fabrication of such
flexures feasible.

2. Approach

Fig. 2 shows a conventional blade flexure and the proposed
geometry for two lattice flexure types. Fig. 2b shows the geome-
try of an X-type flexure, so named for the crossing of the diagonal
lattice elements. Fig. 2c shows the geometry of a V-type lattice
flexure, so named because of the diagonal elements’ resemblance
to the letter “V.” Both the X-type and V-type flexures are charac-
terized by the ratio L1/b and the aspect ratio �, where � = h/(h + b)
(the thickness over the overall width). By removing material from
the middle of the blade flexure the effective width is reduced. This
reduces stiffness, and because the diagonal elements of the lattice
are in combined bending and torsion (rather than pure bending),
the percent reduction in bending motion stiffness is greater than

Fig. 3. The X-type flexure is analyzed using the symmetry about the central plane
of the flexure, using the variables L1, L2, and ˛.

the percent of material removed. While many geometries incor-
porating these concepts can be conceived, the geometries herein
presented are meant to be a proof-of-concept and a starting point
for further development.

2.1. Stiffness of lattice flexures

In this section we derive the stiffness of X-type and V-type lattice
flexures. Fig. 3 shows a single geometric unit of a lattice flexure and
the nomenclature used in the derivation.

First we  will derive the stiffness of an X-type lattice flexure.
Variables used in this derivation are depicted in Figs. 2 and 3. Note
that the stiffness of only one quadrant of the X is analyzed and the
overall stiffness is found from symmetry. The bending moment M0
applied to the lattice element can be decomposed into the moments
M1 and M2. M1 is the moment carried by the “rails” of the lattice,
while M2 is the moment carried by the diagonal lattice element.
The deflected angle � induced by M1 can be found from elementary
beam theory as

� = M1L1

EIr
(1)

where Ir is the second moment of area of the rail, E is the Young’s
modulus, and L1 is the length of one half-unit cell of the X-type
flexure.

Because the ends of the two  segments are rigidly joined, the
diagonal lattice element must also be deflected to this angle (�). The
angular deflection of the diagonal lattice element due to torsion (�t)
in the beam is given by

�t = M2 sin(˛)L2

KG
(2)

where L2 is the length of the diagonal lattice element, M2 is the
component of the applied moment (M0) reacted by the diagonal
lattice element, K is a section property (a function of lattice ele-
ment cross-section [12]), G is the modulus of rigidity, and  ̨ is the
lattice angle (see Figs. Figs. 2b and 3). The angular deflection due to
bending (�b) is given by

�b = M2 cos(˛)L2

EIl
(3)

where Il is the second moment of area of the diagonal lattice ele-
ment.

Fig. 2. Examples of different flexure types. Note that b is the distance between the rail centers, not the full width of the flexure.
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