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a  b  s  t  r  a  c  t

In  this  study,  a 5N − 4  phase  shifting  algorithm  comprising  a polynomial  window  function  and  a  discrete
Fourier  transform  is  developed  to  measure  interferometrically  the  surface  shape  of a  silicon  wafer,  with
suppression  of the  coupling  errors  between  the  higher  harmonics  and the phase  shift  error.  A new  poly-
nomial  window  function  is derived  on the  basis  of  the  characteristic  polynomial  theory  by locating  five
multiple  roots  on  the  characteristic  diagram.  The  characteristics  of  the  5N  − 4  algorithm  are  estimated
with  respect  to  the  Fourier  representation  in  the  frequency  domain.  The  phase  error  of  the  measurements
performed  using  the  5N −  4 algorithm  is discussed  and  compared  with  those  of  measurements  obtained
using  other  conventional  phase  shifting  algorithms.  Finally,  the surface  shape  of  a 4-in.  silicon  wafer  is
measured  using  the 5N − 4 algorithm  and  a wavelength  tuning  Fizeau  interferometer.  The  accuracy  of  the
measurement  is discussed  by  comparing  the  amplitudes  of  the  crosstalk  noise  calculated  by other  algo-
rithms. The  uncertainty  of  the  entire  measurement  was  34  nm,  better  than  that  of  any other  conventional
phase  shifting  algorithms.

© 2016 Elsevier  Inc.  All  rights  reserved.

1. Introduction

Silicon wafers have been widely used in the semiconductor
industry because of their excellent performance and the ease of
fabricating integrated circuits on their surface and controlling the
value of resistance [1]. The surface shape of a silicon wafer must be
measured precisely when estimating the performance of semicon-
ductor devices [2]. The semiconductor industry uses atomic force
microscopy (AFM) to measure the surface shape of a silicon wafer;
however, using AFM to measure the entire surface shape is time
consuming. Wavelength tuning Fizeau interferometry is another
method for measuring the surface shape distribution of a silicon
wafer. In wavelength tuning interferometry, phase shifting is used
to vary the phase difference between a sample beam and a ref-
erence beam, and the signal irradiance is acquired at equal phase
difference intervals [3]. The phase distribution of a fringe pattern
can be calculated with a phase shifting algorithm.

When using wavelength tuning interferometry to measure the
surface shape of a silicon wafer, not only the phase shift errors
that occur during wavelength tuning and the harmonics result-
ing from the high reflectivity of the surface, but also the coupling
errors between the phase shift errors and the higher harmonics
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must be considered because the surface reflectivity is high (30%) [4].
These systematic errors influence the calculated phase and appear
as crosstalk noise obtained by subtracting successive results.

Many studies [5–23] have reported on error-compensating
algorithms that can eliminate the effect of systematic errors. Sys-
tematic approaches to the design of such phase shifting algorithms
include averaging over successive samples [5,9,11], using a Fourier
representation [7] or analytical expansion [10,16,17,19,20], using
data-sampling windows [12,18], and characteristic polynomial
theory [13,21–23]. The prominent Schwider–Hariharan 5 sample
algorithm [5,6] can compensate for phase shift miscalibration but
not for coupling errors. The 2N − 1 algorithm, developed by Surrel
[13], uses characteristic polynomial theory to compensate for phase
shift miscalibration and the coupling error between the higher
harmonics and the phase shift miscalibration; however, this algo-
rithm cannot compensate for the nonlinearity in the phase shift
error. Hibino et al. [16], who derived two kinds of 19 sample algo-
rithms [19,20] by considering the refractive index dispersion in
the transparent plate, proposed a phase shifting algorithm that can
compensate for the coupling error. However, Hibino algorithms do
not satisfy the condition for maximum fringe contrast [22]. Phase
shifting algorithms should satisfy the maximum fringe contrast
condition when a highly reflective surface such as that of a sili-
con wafer is measured [22]. We developed the 4N − 3 algorithm
that can compensate for up to second-order nonlinearity and cou-
pling errors [23]. The surface shape and variation in the optical
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Fig. 1. Laser Fizeau interferometer.

thickness of a lithium niobate (LNB) crystal wafer were measured
simultaneously using wavelength tuning and the 4N − 3 algorithm.
However, the ripples that result from the residual phase shift error
and coupling errors were clearly observed in the measured surface
shape and the variation in the optical thickness [23]. The ripples
that resulted from the imperfect suppression of the coupling errors
were observed when one subtracted the successively measured
surface shapes or the variations in optical thickness.

We  developed and present here a new 5N − 4 phase shifting
algorithm that comprises a polynomial window function and a dis-
crete Fourier transform (DFT) term to measure the surface shape of
a silicon wafer with suppression of the coupling errors. The char-
acteristics of the 5N − 4 algorithm are discussed with respect to
the Fourier representation of the phase shifting algorithm in the
frequency domain. We  show that our 5N − 4 algorithm yields the
smallest phase error compared with those of five conventional
phase shifting algorithms. Finally, the surface shape of a 4-in. silicon
wafer was measured using a wavelength tuning Fizeau interferom-
eter and the 5N − 4 algorithm. The accuracy of the measurement of
the surface shape was 2.2 nm.  The accuracy of the conventional
phase shifting algorithms also is discussed with respect to the
crosstalk noise.

2. 5N − 4 phase shifting algorithm

2.1. Laser Fizeau interferometer

A laser Fizeau interferometer (Fig. 1) allows the interference
of multiple reflections between a sample surface and a reference
surface by virtue of the high degree of coherence of the light. Let
the reference and sample surface reflectivities be r1 and r2, respec-
tively.

The observed signal irradiance I(˛r) in the interference fringe
pattern that occurs during phase shifting is given by [4,17]

I (˛r) =
∞∑

m=1

Am cos (ϕm − m˛r)

= I0

[
1 +

∞∑
m=1

�m cos (ϕm − m˛r)

]

= I0 + I0�1 cos (ϕ1 − ˛r) + I0�2 cos (ϕ2 − 2˛r) + · · ·,

(1)

where ˛r is the phase shift parameter and Am and ϕm are the ampli-
tude and phase of the mth harmonic component, respectively. The
DC component I0 of the signal irradiance and the fringe contrast �m

of the mth harmonic component are given by [4]

I0 = r1 + r2 − 2r1r2

1 − r1r2
, (2)

�1 = 2 (1  − r1) (1 − r2)
r1 + r2 − 2r1r2

√
r1r2, (3)

�2 = −�1
√

r1r2, (4)

�3 = �1r1r2. (5)

The fringe contrast �m for each successive harmonic of order m
decreases in strength by the multiplicative factor −√

r1r2. The phase
distribution can be determined using a phase shifting algorithm.
Consider an M-sample phase shifting algorithm, where the refer-
ence phases are separated by M − 1 equal intervals of ı = 2�/N rad
and N is an integer. A general expression for the calculated phase
in this algorithm is given by [24]

ϕ∗ = arctan

∑M
r=1brI (˛r)∑M
r=1arI (˛r)

, (6)

where ar and br are the rth sampling amplitudes and I(˛r) is given
by Eq. (1). When the phase shift is nonlinear, each ˛r value is a
function of the phase shift parameter and can be expressed as a
polynomial function of the unperturbed phase shift value ˛0r [16]:

˛r = ˛0r [1 + ε (˛0r)] = ˛0r

[
1 + ε0 + ε1

˛0r

�

+ε2

(
˛0r

�

)2
+ · · · + εp

(
˛0r

�

)p
]

, (7)

where p is the maximum order of the nonlinearity, ε0 is the error
coefficient of the phase shift miscalibration, εq (1 ≤ q ≤ p) is the
error coefficient of the qth nonlinearity of the phase shift, and
˛0r = 2�[r − (M + 1)/2]/N.

The phase error �ϕ  in the calculated phase is a function of the
amplitude ratio Am/A1 and the error coefficient εq and can undergo
a Taylor expansion as follows:

�ϕ  = ϕ∗ − ϕ1 = o (Ak) + o
(

εq

)
+ o

(
Akεq

)
, (8)

for k = 2, 3, . . .,  m and q = 0, 1, . . .,  p. In Eq. (8), о(Ak), о(εq), and
о(Akεq) are the error in the harmonics, the phase shift error, and
the coupling error between the higher harmonics and the phase
shift error, respectively. For example, о(ε0) is the phase shift mis-
calibration and о(A2ε1) is the coupling error between the second
harmonic and first-order nonlinearity of the phase shift error.

When measuring the surface shape of a highly reflective sam-
ple such as a silicon wafer, the coupling error is large because the
higher harmonics components considerably influence the calcu-
lated phase distribution, even though the phase shift miscalibration
is extremely small [4].

2.2. Derivation of 5N − 4 phase shifting algorithm

The characteristic polynomial P(x) proposed by Surrel [13] is
defined as

P (x) =
M∑

r=1

(ar + ibr) xr−1, (9)

where i is the imaginary number, x = exp(imı), and ı = 2�/N. Surrel
noted that the locations and multiplicities of the roots of the poly-
nomial in the characteristic diagram determine the sensitivity of
the algorithm to higher harmonics and phase shift miscalibration
[13].

First, to suppress the mth harmonic component, the character-
istic polynomial of the phase shifting algorithm should have single
roots in the characteristic diagram, as shown in Fig. 2(a) [13]. This is
the synchronous detection algorithm proposed by Bruning [3] and
it does not compensate for о(εq) and о(Akεq) specified in Eq. (8). To
suppress o(ε0) and o(Amε0), the double roots should be located on
the characteristic diagram as shown in Fig. 2(b), the 2N − 1 algo-
rithm proposed by Surrel [13], which uses the triangular window
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