Accepted Manuscript

Solar selective coatings with multilayered structure based on thermal spraying WC-Co solar absorption layer

Chengzhu Ke, Xuemin Zhang, Weiyan Guo, Yongjia Li, DianQing Gong, Xudong Cheng

PII: S0042-207X(17)31207-1

DOI: 10.1016/j.vacuum.2018.01.046

Reference: VAC 7795

To appear in: Vacuum

Received Date: 5 September 2017
Revised Date: 11 December 2017
Accepted Date: 26 January 2018

Please cite this article as: Ke C, Zhang X, Guo W, Li Y, Gong D, Cheng X, Solar selective coatings with multilayered structure based on thermal spraying WC-Co solar absorption layer, *Vacuum* (2018), doi: 10.1016/j.vacuum.2018.01.046.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Solar selective coatings with multilayered structure based on thermal spraying WC-Co

solar absorption layer

Chengzhu Ke a, Xuemin Zhang a, Weiyan Guo A, Yongjia Li a, DianQing Gong b, Xudong Cheng a, *

^a State Key Laboratory of Advaced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070,

PR China

^b College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China

Abstract: Based on the outstanding high-temperature stability of WC-Co coating prepared by high-velocity

oxy-fuel (HVOF) spraying, CuCoMnOx, CuCoMnOx-SiO2, and SiO2 sols synthesized by sol-gel method were

deposited successively on the coating after grinding the surface of it. CuCoMnO_x was used as sealing layer to

fill the larger pores and grooves on the surface, then, the composition CuCoMnO_x-SiO₂ sol was deposited as the

second sealing layer to eliminate the remaining smaller pores as well as transition layer to connect the sealing

layer and the uppermost SiO₂ anti-reflective layer. The absorptance (a) of the new multilayer structure coating

obtained through this way increased from 0.821 to 0.915 and the emittance (ϵ) decreased from 0.434 to 0.290.

After being annealed for 50h at 550°C under non-vacuum environment, the α and ε of the multilayered

coatings stack changed to 0.901/0.320. The structural transformation of the coatings and mechanisms of its

improvement were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy

dispersive spectrometer (EDS) and laser scanning confocal microscope (LSCM). The results indicated that with

the deposition of sol films in turn, defects on the surface of WC-Co coating were gradually reduced and formed

a compact surface eventually, in correspondence, roughness of it reduced. And the formation of good element

gradients in multilayer structures might be the explanation for its substantial improvement in optical

performance.

Keywords: solar selective coatings, multilayered structure, CuCoMnO_x, HVOF, sol-gel method

1 / 18

Download English Version:

https://daneshyari.com/en/article/8044363

Download Persian Version:

https://daneshyari.com/article/8044363

<u>Daneshyari.com</u>