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a  b  s  t  r  a  c  t

In  this  paper,  a  compliant  parallel  manipulator  with  six  compliant  limbs  is proposed  for  micro  positioning
applications.  The  load–displacement  model  of a single  compliant  limb  is established  using  a  nonlinear
closed-form  spatial  beam  model.  The  inverse  solution  to the  compliant  parallel  manipulator  is then
implicitly  derived  by  applying  load  equilibrium  to the  moving  platform.  Finally,  the  compliant  model  of
the limb  and  the  implicit  inverse  kinematic  solution  of  the  manipulator  are  fully  tested  by  FEA. Discrep-
ancies  between  results  of  the  presented  models  and  the  FEA  are  analyzed  within  planned  workspaces.
The  validations  demonstrate  that accuracies  of  the  proposed  models  are  acceptable  and  can  be  improved
by  shrinking  the  planned  workspace.

©  2016 Elsevier  Inc.  All  rights  reserved.

1. Introduction

Compliant parallel manipulators (CPMs) provide predetermined
motion due to the elastic deflections of flexure modules and can
be utilized in various applications [1]. Compared with the conven-
tional parallel mechanism, a CPM is well known for its potential
merits, such as zero backlash, high precision, lack of friction and
wear. Due to these advantages, CPMs have been widely studied
[2–4] and become more and more popular in the parallel mecha-
nism research community.

One of the most commonly used flexure hinges is the spa-
tial beam flexure hinges (SBFH) [5–7]. The SBFH, which is usually
referred as a uniform, symmetric cross-section, slender and spatial
beam flexure, has three relative high compliances, i.e. two  bending
compliances and one-torsion compliance about its centroid axis.
On the other hand, the translational compliance along the centroid
axis is much lower. Therefore, a SBFH generally has five degrees of
freedom (DOF) as well as one degree of constraint (DOC) [8] and is
usually treat as a compliant spherical joint [1,4,8].

In previous studies of CPMs, finite element analysis (FEA) based
methods are still prevailing in solving the load–displacement rela-
tions [1,3,9]. In these studies, basic components of the CPMs, such
as flexure hinges and struts, are generally analyzed using beam
elements based on finite element method (FEM) where nodal stiff-
ness matrices are first derived and then assembled to establish the
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stiffness matrix of the whole manipulator. In practice, stiffness
matrix of the CPM can be linearly formulated, but it is only accurate
within a very small workspace [10]. Although FEA method usually
has a neat mathematical form and relative high efficiency, para-
metric design insights which are strongly demanded in the design
stage become ambiguous.

In order to find a tradeoff between accuracy and mathe-
matical complexity, while taking into account the demands of
parametric design, several beam formulations, which are capa-
ble of capturing all the measurable deformations of the SBFH, are
developed. Hodges and Dwell’s work [9] presents a group of slen-
der beam formulations considering cross-sectional distortion and
warping along with combined bending, torsional and axial loads
for dynamic analysis of a helicopter rotor blade. Their formulations
are approximated to the second and third order, but the explicit
load–displacement relations are not provided in either analyti-
cal or closed-form. An analytical model has been presented for
a three-legged table with vertical beam flexures in Hao’s work
[11], but this model fails to capture the coupling between the two
bending directions. Moreover, the analytically deduced model has
difficulty in dealing with flexure mechanisms with four or more
legs because of the mathematical complexity. Recently, Sen and
Awtar’s work provides a closed-form nonlinear model to formu-
late the load–displacement relations of a multi-legged table flexure
mechanism [6]. The beam model can provide a closed-form solution
to the SBFH with 95% accuracy over a range of ±0.1 L (∼10% of the
beam length) and ±0.1 rad for translational and rotational displace-
ments, respectively. However, the principle of virtual work (PVW)
based method that was  adopted in Ref. [7] can hardly be applied to
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the CPM with multi-segmented limbs, such as PSS limbs referred in
Ref. [3].

The motivation of this paper is to develop a novel inverse
kinematic model for our newly designed 6-DOF CPM with six three-
segmented identical compliant limbs. The load–displacement
model of the three-segmented compliant limb and the inverse
kinematics model to the 6-DOF CPM will be established in closed-
form. Corresponding validations will be performed in interested
workspaces in order to prove the accuracy of the presented mod-
els. Comparing with the existed models, the proposed model can
be solved without the assistance of FEA based methods and will
provide more parametric design insights.

The reminder of this paper is organized as follow. The struc-
ture of the proposed 6-DOF CPM is described in Section 2, then the
load–displacement model of a single compliant limb is derived in
Section 3. Section 4 presents the inverse kinematic model to the
designed 6-DOF CPM. All of the proposed models are then vali-
dated with FEA in Section 5. At last, conclusions will be given in
Section 6.

2. Conceptual design of a 6-DOF parallel manipulator

The prototype of the proposed 6-DOF CPM is depicted in Fig. 1
and the design parameters of the CPM are listed in Table 1. Detailed
structural descriptions are demonstrated in Fig. 2. It is shown that
the designed parallel manipulator using SBFH at all joints is com-
posed of a moving platform, six identical limbs and six vertical
linear actuators fixed to the base platform. The six linear actua-
tors are symmetrically arranged about the x0-axis of the coordinate
system O[xo, yo, zo] at the center of the fixed base. Each of the six

Fig. 1. The prototype of the 6-DOF CPM.

Table 1
Geometric and material parameters of the 6-PSS prototype.

Item Value

Distribution radius of upper SBFH: r 40 mm
Distribution radius of lower SBFH:R 80 mm
Distribution angle of upper SBFH: � 30◦

Distribution angle of lower SBFH: � 60◦

Radius of the SBFH: rf 1 mm
Length of the SBFH: Lf 40 mm
Radius of the strut: rs 10 mm
Length of the strut: Ls 100 mm
Modulus of elasticity of SBFH: Ef 113 GPa
Modulus of elasticity of the limb: Es 206 GPa

Fig. 2. Structural description of the spatial 6-PSS parallel manipulator.

identical limbs connects the moving platform to the fixed base with
an upper SBFH followed a rigid strut and a lower SBFH in sequence.

A moving frame P[xP, yP, zP] is settled at the center of the moving
platform. Corresponding component vectors of the frame O and
the frame P are parallel to each other at the initial configuration
where the principal planes of the fixed base and moving platform
are parallel and the line OP is perpendicular to the fixed base plate.
Point Ei (i = 1 to 6) denotes the ith immobile reference point on the
fixed base while point Ai (i = 1 to 6) indicates the intersection point
where the ith SBFH joins the moving platform. The layout of the
points Ai and Ei are presented in Fig. 2 while the related parameters
are listed in Table 1.

In the current design, all the actuators are fitted on the fixed
base, which makes the six identical limbs free of external distur-
bances that induced by electrical wires of actuators. Furthermore,
the proposed CPM can be designed as either a micrometer or a
nanometer positioning platform and hence the actuators should be
chosen according to the design objective.

To avoid the monolithic feature [3] and achieve a large
workspace, the SBFH is employed as the compliant spherical joint
in this paper. The load–displacement relations to the utilized SBFH
can be expressed in a closed-form model under the assumption
of Euler–Bernoulli beam theory [12]. Furthermore, to maximize
the workspace of the designed parallel platform, the chosen mate-
rials should allow great elastic deformations before yield, hence
the materials with the greatest ratios between the yield strength
and the Young’s modulus (�/E) are preferred. The Ti–Al–4V alloy
with relative high Young’s modulus (113 GPa) and �/E (0.0078) is
selected as the material for the SBFH.

3. Load–displacement model of the compliant limb

3.1. Load–displacement model of the SBFH

The SBFH adopted in this paper is a slender beam flexure with
circular cross-section. As shown in Fig. 3, the SBFH is uniform along
its length subject to a general end-loading and point Qd = [X0, 0,
0] is the center of an arbitrary cross-section that is at distance X0
from the beam-root and perpendicular to the centroidal axis prior
to deformation. The translations and rotations of the cross-section
Qd, which are caused by a given end load [FXL, FYL, FZL, MXL, MYL,
MZL], are given as �Q = [u, v, w] and   = [˛, ˇ, �d] in Fig. 3.

According to Euler’s deformation assumptions, the cross-section
Qd remains plane and perpendicular to deformed centroidal axis.
In deformation, the entire cross-section denoted by Q translates
as a rigid plane from Q to Qd = [X0 + u, v, w] by undertaking three
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