Accepted Manuscript

Tribological and corrosion properties of PM 316L matrix composites reinforced by in situ polymer-derived ceramics

Dandan Guan, Xinbo He, Ren Zhang, Rui Li, Xuanhui Qu

PII: S0042-207X(17)31100-4

DOI: 10.1016/j.vacuum.2017.12.003

Reference: VAC 7709

To appear in: Vacuum

Received Date: 16 August 2017

Revised Date: 4 November 2017 Accepted Date: 5 December 2017

Please cite this article as: Guan D, He X, Zhang R, Li R, Qu X, Tribological and corrosion properties of PM 316L matrix composites reinforced by in situ polymer-derived ceramics, *Vacuum* (2018), doi: 10.1016/j.vacuum.2017.12.003.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Tribological and corrosion properties of PM 316L matrix composites reinforced

by in situ polymer-derived ceramics

Dandan Guan^{a,*}, Xinbo He^a, Ren Zhang^a, Rui Li^a, Xuanhui Qu^a

a. Institute for Advanced Materials and Technology, University of Science and

Technology Beijing, Beijing, 100083, China

*Corresponding author. Tel.: +86-10-82122603; fax: +86-10-82122603.

E-mail address: guandandan100@163.com

Abstract:

In this study, the 316L stainless steel metal matrix composites with different weight

percentages (1.5-7 wt.%) of polycarbosilane (PCS) were fabricated by means of

solution-assisted wet mixing and spark plasma sintering (SPS). The effect of PCS

content on the phase, microstructure, elements distribution, and microhardness was

investigated in detail. The wear resistance of the composites was tested by using a

ball-on-disk tribotester. The corrosion resistance of the composites was investigated

utilizing potentiodynamic polarization. The results showed that the phase of the 316L

without PCS consisted of austenite. New phases such as precipitated M₇C₃ and iron

silicide were formed when the PCS was added. The volume fraction of the

precipitated carbides and iron silicide was increased with the increase in the PCS

content. The microhardness of the composites was increased with the increase in PCS.

While, the best wear performance was attained with a PCS content of 3 wt.%. The

corrosion resistance of the composites was decreased with the increase in the PCS

1

Download English Version:

https://daneshyari.com/en/article/8044705

Download Persian Version:

https://daneshyari.com/article/8044705

<u>Daneshyari.com</u>