
Precision Engineering 39 (2015) 187–193

Contents lists available at ScienceDirect

Precision  Engineering

jo ur nal ho me  p age: www.elsev ier .com/ locate /prec is ion

Registration  of  infrared  transmission  images  using  squared-loss
mutual  information

Tomoya  Sakaia,∗, Masashi  Sugiyamaa,  Katsuichi  Kitagawab, Kazuyoshi  Suzukib

a Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
b Toray Engineering Co., Ltd., 1-1-45 Oe, Otsu, Shiga 520-2141, Japan

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 30 April 2014
Received in revised form 18 August 2014
Accepted 31 August 2014
Available online 16 September 2014

Keywords:
Infrared transmission image
Image registration
Squared-loss mutual information

a  b  s  t  r  a  c  t

Infrared  light  allows  us  to measure  the inner  structure  of opaque  samples  such as  a  semi-conductor.  In
this  paper,  we  propose  a method  of  registering  multiple  infrared  transmission  images  obtained  from
different  layers  of  a  sample  for  3D reconstruction.  Since  an  infrared  transmission  image  obtained  from
one  layer  is  contaminated  with  defocused  images  coming  from  other  layers,  registration  with  a  standard
similarity  metric  such  as the squared  error  and  the  cross  correlation  does  not  perform  well. To cope with
this  problem,  we  propose  to use  the  squared-loss  mutual  information  as  an  alternative  similarity  measure
for  registration,  which  is  more  robust  against  noise  than  ordinary  mutual  information.  The  practical
usefulness  of the  proposed  method  is  demonstrated  in simulated  and  actual  experiments.

©  2014 Elsevier  Inc.  All  rights  reserved.

1. Introduction

Non-destructive inspection of precision instruments such as
semi-conductors is one of the most important manufacturing pro-
cesses in precision industries, and measuring inner structure of
opaque objects by infrared light is a promising means for this pur-
pose. However, images obtained by infrared light from different
layers of a sample often suffer misalignment because of asyn-
chronous scanning of images from different layers. In this paper,
we therefore consider the problem of registering multiple infrared
transmission images obtained from different layers of a sample,
and propose a new practical algorithm for 3D reconstruction. Our
proposed method can be used, e.g., for identifying the position of
defects in semi-conductor samples and thus can provide more pre-
cise information of the inner structure for inspection.

Related image registration problems have been explored, e.g., in
photolithography processes for aligning circuit patterns and masks
[1] and in pattern and photo-mask inspection for comparing target
and reference images [2]. On the other hand, the image registration
problem we are tackling in this paper is much more challenging
than the previous works because an infrared transmission image
obtained from one layer is contaminated with defocused images
coming from other layers. For this reason, standard linear similarity
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metrics such as the sum of squared differences (SSD) and the normal-
ized cross-correlation (NCC) [3–8] are not suitable to registration of
infrared transmission images.

Mutual information (MI) [9], which is a quantity of interest in
the information theory community, allows us to capture non-linear
variations between two random variables:

MI  :=
∫ ∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (1)

where p(x, y) is the joint probability density of x and y, and p(x)
and p(y) are the marginal probability densities of x and y, respec-
tively. MI  is always non-negative, and takes zero if and only if x and
y are statistically independent. Thus, MI  measures the dependency
between x and y, which describes more precise “relation” than lin-
ear correlations. For example, if y = x2, x and y are uncorrelated but
they are still statistically dependent and thus MI  takes a strictly
positive value. Note that MI  is reduced to a linear correlation mea-
sure when x and y follow the centered Gaussian distributions. Thus,
MI can be regarded as a generalization of linear correlations to
non-Gaussian random variables.

Given this superior detectability of statistical dependency, MI
should be regarded as a suitable similarity measure for registration
of infrared transmission images. However, because of the log func-
tion included in the definition of MI,  which is an extremely steep
function near the origin, MI  is highly sensitive to noise and outliers
[10].
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To overcome the excessive sensitivity of MI,  a variant of MI  called
squared-loss mutual information (SMI) [11] was introduced:

SMI  := 1
2

∫ ∫
p(x)p(y)

(
p(x, y)

p(x)p(y)
− 1

)2

dxdy. (2)

SMI  is also always non-negative and takes zero if and only if x
and y are statistically independent. Thus, SMI  can be used as an
alternative to MI  for evaluating statistical dependency, without
suffering the “log” problem. Furthermore, thanks to the simple
squared-difference expression of SMI, it can be analytically approx-
imated from samples in a statistically optimal way, and this analytic
SMI  approximator allows explicit computation of its derivative
[12]. This is a highly useful property in image registration, because
eventually we want to register images so that SMI  is maximized
with respect to some image transformation parameters. For these
reasons, we propose to use SMI  as our dependency measure for
registration of infrared transmission images.

After reviewing an SMI  approximator in Section 2, we describe
our SMI-based image registration method in Section 3. Its perfor-
mance is experimentally evaluated in Section 4, and we  conclude
in Section 5.

2. SMI  approximation

Since SMI  defined by Eq. (2) contains unknown probability den-
sities p(x, y), p(x), and p(y), its value cannot be directly computed. In
this section, we review how SMI  is approximately computed from
paired samples {(xi, yi)}n

i=1 independently following p(x, y).
A naive way to approximately compute SMI  is to separately esti-

mate the densities p(x, y), p(x), and p(y) from samples
{

(xi, yi)
}n

i=1
,

and plug the estimated densities p̂(x, y), p̂(x), and p̂(y) in the defini-
tion of SMI. However, such a plug-in approach is known to perform
poorly, because the first step of estimating densities is performed
without regards to the second step of plugging them in SMI. More
specifically, dividing p̂(x, y) by p̂(x) and p̂(y) can significantly mag-
nify the estimation error of p̂(x, y) when p̂(x) and p̂(y) take a small
value [13].

To cope with this problem, the direct SMI  approximator called
least-squares mutual information (LSMI) [11,10] was proposed. LSMI
directly estimates the density ratio function,

r(x, y) := p(x, y)
p(x)p(y)

, (3)

without individually estimating each density. More specifically, the
density ratio r(x, y) is modeled by the following multiplicative kernel
model [14]:

r�(x, y) :=
n∑

i,j=1

�i,jK(x, xi)L(y, yj), (4)

where K(x, x′) and L(y, y′) are kernel functions for x and y, and � is
a parameter matrix whose (i, j)-element is �i,j. Below, we focus on
the Gaussian kernel for K(x, x′) and L(y, y′):

K(x, x′) := exp

(
− (x − x′)2

2�2

)
, (5)

L(y, y′) := exp

(
− (y − y′)2

2�2

)
, (6)

where � denotes the Gaussian bandwidth. When the sample size
n is too large, we may  reduce the number of kernel bases in the
model (4) by, e.g., randomly selecting a subset. In our experiments,
we randomly choose 100 kernel bases.

The parameter � is determined so that the following squared
error J is minimized:

J(�) : = 1
2

∫ ∫
p(x)p(y)(r�(x, y) − r(x, y))2dxdy

= 1
2

∫ ∫
p(x)p(y)r�(x, y)2dxdy −

∫ ∫
p(x, y)r�(x, y)dxdy

+ C, (7)

where C is a constant independent of �. By ignoring the irrelevant
constant C, approximating the expectations with the empirical
averages, and including the �2-regularizer for avoiding overfitting,
the LSMI solution �̂ was shown to satisfy the following equation
[14]:

1
n2

K2�̂L2 + ��̂ = 1
n

KL, (8)

where Ki,j = K(xi, xj), Li,j = L(yi, yj), and � ≥ 0 denotes the regulariza-
tion parameter that is determined by cross-validation with respect
to J [11]. The above equation is called the discrete-time Sylvester
equation [15], and is known to be solved in O(n3) time, e.g., via
eigendecomposition.

Finally, based on another expression of SMI,

SMI  = 1
2

∫ ∫
p(x, y)r(x, y)dxdy − 1

2
, (9)

the LSMI estimator is given as

LSMI := 1
2n

tr(K�̂L) − 1
2

. (10)

3. Image registration with LSMI

Let us consider the problem of registering images X and Y: we
transform image X to X̃ (for example, by rotation or translation), so
that X̃ “matches” Y as much as possible. As the matching score, we
use LSMI between X̃ and Y. We regard x̃ as a pixel value of image X̃
and y as a pixel value of image Y, and we  generate paired samples{

(̃xi, yi)
}n

i=1
by coupling pixel values at corresponding points in the

images.
More specifically, our goal is to maximize LSMI with respect

to an image transformation parameter from X to X̃ . Here, we  use
a gradient-based method, such as a gradient ascent method and
a quasi-Newton method, to find a (local) maximizer of LSMI. The
gradient of LSMI is given by

∇LSMI = 1
n2�2

tr(�̂
�

K̃Q �̂L2) − 1
n�2

tr(Q �̂L), (11)

where

K̃i,j := K (̃xi, x̃j), (12)

Qi,j := K̃i,j (̃xi − x̃j)∇ x̃i, (13)

and ∇ x̃i denotes the gradient of the pixel value at x̃i.
Below, for simplicity, we focus on translation as image

transformation.1 Then, the pixel values of the transformed image
X̃ are given by

x̃(u, v) := x(u − wu, v − wv), (14)

1 Note that our framework can handle any transformation as long as it is smooth
with respect to transformation parameters.
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