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a b s t r a c t

The paper is devoted to the study of a rarefied gas flow through a finite length conical pipe into vacuum.
The problem is solved in the complete geometrical setup, which included not only the pipe, but also
high- and low-pressure reservoirs. The analysis is based on the direct numerical solution of the Boltz-
mann kinetic equation with the S-model collision integral in three space dimensions. The method of the
solution is based on the recent implicit total variation diminishing (TVD) method on unstructured spatial
meshes. It is conservative with respect to the collision integral and work across all flow regimes. The
results are provided for various ratios of the outlet and inlet diameters, pipe’s lengths and Knudsen
numbers. The computed flow rates are compared with the case of the circular pipe of constant radius as
well as an approximate method for very long pipes. The influence of the pipe geometry on the flow field
is also examined. The presented results can be used as a benchmark for calculations by other methods
and codes.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A rarefied gas flow through a finite-length pipe or capillary into
vacuum is a popular problem in the rarefied gas dynamics [1,2]. The
majority of the computational studies deal with the flow through a
circular pipe with the constant cross sectional area. Examples
include the Direct Simulation Monte Carlo (DSMC) studies for short
tubes [3] and deterministic studies for short, moderate and long
pipes [4e6]. A comparison of the results from different approaches
with experimental data for the short tube can be found in [7].

It is important that all cited studies analyse the problem in the
complete setup, which includes not only the pipe, but also high and
lower pressure reservoirs, rather than a simplified formulation, in
which the reservoirs are replaced by the evaporation and/or
condensation boundary conditions at the pipe’s ends [8,9]. It ap-
pears that the such a setup, albeit in the planar case, was first
considered in [10,11]. The influence of the geometrical setup on the
flow rate for circular pipe flow was investigated in detail in [5,6].

However, there seem to be no results in the literature for the
rarefied gas flow into vacuum through a conical pipe. If one is only

interested in the mass flow rate and density distribution along the
axial line of the pipe, an approximate method [12,13] can be used.
However, it is valid for very long pipes only, for which the ratio of
both inlet and outlet radii to the length is small. Moreover, the
analysis presented in [4e6] shows that for small Knudsen numbers
this condition along is not enough and that the product of the
Knudsen number and the pipe length has to be large for the
approximate method to be applicable.

The present work is devoted to the deterministic kinetic study of
the rarefied gas flow into vacuum through moderate and long
conical pipes and can thus be viewed as a continuation of [4e6].
The results are based on the numerical solution of the S-model
kinetic equation [14e16] using the recent three-dimensional finite-
volume method [17,18]. The computations are carried out for
various length and outlet to inlet diameter ratios across the range of
rarefaction conditions from the free-molecular to nearly continuum
flow regimes. Numerical results for the mass flow rate and distri-
bution of macroscopic macroparameters are presented in the broad
range of Knudsen numbers, pipe’s length and outlet to inlet radii
ratios. The influence of the pipe geometry on the flow rate and
distribution of macroscopic quantities is examined.

2. Formulation of the problem

The formulation of the problem is an extension of [3e6].
Consider a rarefied gas flow through a conical pipe of length L,
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connecting two infinitely large reservoirs (volumes) filled with the
same monatomic gas. The inlet and outlet radii of the pipe are
denoted as aR1, R2, respectively. The gas in the left reservoir is kept
under pressure p1 and temperature T1, whereas in the right reser-
voir the pressure is p2 is so low that it can be regarded as equal to
zero. It is assumed that reservoirs’ volumes are significantly larger
than the pipe volume and the gas is in equilibrium far away from
the ends of the latter. The real form and size of the reservoirs are
thus of no importance. The complete accommodation of mo-
mentum and energy of molecules occurs at the pipe surface, which
is kept under the same constant temperature T1.

Let us introduce a Cartesian coordinate system (x,y,z) with the
centre located in the centre of the inlet section of the pipe
x ¼ y ¼ z ¼ 0 and the Oz axes directed along the tube. A steady
three-dimensional state of the rarefied gas is determined by the
velocity distribution function f(x,x), where x¼(x,y,z) is the spatial
coordinate, x¼(xx,xy,xz) is the molecular velocity vector. For the rest
of the paper, the non-dimensional formulation is used, inwhich the
spatial coordinates x, mean velocity u ¼ (u1,u2,u3) ¼ (ux,uy,uz),
number density n, temperature T, heat flux vector q ¼ (q1,q2,q3),
viscosity m and distribution function f are scaled using the following
quantities:

R1; b; n1; T1; mn1b
3
; m1 ¼ mðT1Þ; n1b

�3
; (1)

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT1=m

p
; n1 ¼ p1/kT1 is the number density in the left

reservoir;m is the mass of a molecule, k is the Boltzmann constant.
Below, the non-dimensional variables are denoted by the same
letters as the dimensional ones.

The distribution function f is assumed to satisfy the S-model
kinetic equation [14e16], which in the non-dimensional variables
takes the form

xx
vf
vx þ xy

vf
vy þ xz

vf
vz ¼ n

�
f ðSÞ � f

�
; n ¼ nT

m d1; d1 ¼ R1p1
m1b

;

f ðSÞ ¼ fM
�
1þ 4

5 ð1� PrÞSaca
�
c2 � 5

2

��
; fM ¼ n

ðpTÞ3=2 exp
��c2

�
;

vi ¼ xi � ui; ci ¼ viffiffiffi
T

p ; Si ¼ 2qi
nT3=2; c2 ¼ caca:

(2)

Here d1 is the so-called rarefaction parameter, which is inversely
proportional to the Knudsen number. Summation over repeated
Greek indices is assumed. For a monatomic gas the Prandtl number
Pr ¼ 2/3. The non-dimensional macroscopic quantities are defined
as the integrals of the velocity distribution function with respect to
the molecular velocity:

�
n;nu;n

�3
2 T þ u2

�
; q

� ¼
Z �

1; x; x2;
1
2
vv2

�
fdx;

u2 ¼ uaua; v2 ¼ vava; x2 ¼ xaxa; p ¼ nT :

(3)

The kinetic equation (2) has to be augmented with the boundary
conditions on the pipe and reservoir walls. Let n ¼ (nx,ny,ny) be the
unit normal vector to a boundary surface, pointing inside the flow
domain. The condition of diffuse molecular scattering on the pipe
surface with complete thermal accommodation to the non-
dimensional surface temperature T1h1 is given by:

f ðx; xÞ ¼ fw ¼ nw

ðpÞ3=2 exp
	
�x2



; xn ¼ ðx;nÞ > 0: (4)

The density of reflected molecules nw is found from the imper-
meability condition stating that the mass flux through the walls is
equal to zero:

nw ¼ Ni=Nr; Ni ¼�
Z

xn<0

xnfdx; Nr ¼
Z

xn>0

xn
1

ðpÞ3=2
exp

	
�x2



dx:

(5)

The same condition (5) is used for the parts of the reservoir
walls directly adjacent to the pipe; these are located at z ¼ 0,L. At
the rest of the reservoir wall the distribution function of the
incoming molecules xn > 0 is specified as

f ¼ f1 ¼ n1

ðpÞ3=2 exp
	
�x2



; z � 0;

f ¼ 0; z � L:
(6)

The boundary condition (6) is essentially an evaporation
boundary condition for the molecules entering the flow domain
and is meant to model the indefinitely large reservoirs.

The main computed characteristic of the flow is the mass flow
rate M, which in the non-dimensional variables is given by an in-
tegral over the cross section:

_M ¼
Z

AðzÞ
rðx; y; zÞuzðx; y; zÞdxdy: (7)

Here A(z) is the cross-sectional area at the position z along the
pipe. Note, that mass flow rate _M is constant along the pipe.

3. Details of the calculations

3.1. Method of solution

The formulated problem possesses the cylindrical symmetry
and can thus be solved in the cylindrical coordinate system. How-
ever, our experience suggests that the direct three-dimensional
solution methods are more accurate and efficient than the ap-
proaches based on the axisymmetrical formulations. In the present
work the steady-state solution of the problem is found by means of
an implicit time-marching algorithm for the kinetic equation (2) in
the non-stationary form. The numerical method consists of the
high-order accurate advection scheme applicable to hybrid un-
structured meshes, conservative procedure for the calculation of
the model collision integral and one-step implicit time evolution
for fast steady-state convergence. As a result, it allows efficient
calculation of rarefied flows in the wide range of degrees of rare-
faction in arbitrary geometries.

A summary of the numerical method can be found in [18], see
also [17,19] and references therein. The infinite domain of integra-
tion in the molecular velocity space is replaced by a finite compu-
tational domain. The velocity distribution function is then defined
in centres of the resulting velocity mesh. The kinetic equation (2) is
replaced by a system of time-dependent advection equations; each
equation corresponds to a specific point from the velocity mesh.
The macroscopic quantities at any spatial location are computed in
such a way as to satisfy not only conservation laws, but also correct
relaxation of the heat flux vector. Assuming the model collision
integral is known, the equations are solved using an implicit TVD
method, which is second-order accurate in space. An LU-SGS type
time evolution procedure on unstructured meshes [20] is used to
allow for faster steady-state convergence.

For large-scale problems such as the ones reported here the
calculations are carried out on modern high-performance clusters
using Message Passing Interface (MPI). In the present work the HPC
”Lomonosov” of Lomonosov Moscow State University, Russia, was
utilized. The runs were performed on up to 160 cores of the
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