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A B S T R A C T

This paper proposes a design method of a static balancer with multi-dof unit gravity compen-
sators. The design method based on the space mapping method is extended to a multi-dof
gravity compensator space. A multi-dof gravity compensator can be equivalently represented
with one-dof gravity compensators applying the design method. An equivalent mapping
matrix is determined between rotation angles of a multi-dof gravity compensator and those
of one-dof gravity compensators. That is, characteristics of a multi-dof gravity compensator
are described in the one-dof gravity compensator space. Complexity and variety originated
from the multi-dof can be overcome using the equivalent mapping matrix during designing
a static balancer with multi-dof gravity compensators. The design of a static balancer with
multi-dof gravity compensators is conducted: 1. perform the design only with the one-dof
gravity compensator space to determine the base mapping matrix between the joint and the
one-dof gravity compensator space, 2. applying the equivalent mapping matrix to the base
mapping matrix. Various designs are obtained. Results of simulations show that the total
potential energy is invariant for all poses.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Static balancing has been studied for several decades [1,2]. One degree-of-freedom (dof) gravity compensators were
proposed for rotational motion [2]–[7]. Cam mechanisms are applied to one-dof gravity compensators [5,7]. The gravity
compensators for four-bar and slider–crank mechanisms are designed with a single spring [8]. A 2-dof gravity compen-
sator for the roll-pitch rotations is presented in that the bevel gears are utilized [9]. A 3-dof gravity compensator for the
yaw–roll–pitch rotations with a single spring is proposed [10]. A static balancing method for a general n-DOF revolute and
spherical jointed rigid-body linkages has been developed [11]. The gravity balancing considering the mass of a spring has been
studied [12].

The unit gravity compensators in the previous researches applied to a multi-link and multi-dof manipulator. Gravity
compensators for a 5-bar mechanism are proposed in Refs. [4]–[5]. A parallelogram is utilized [10,13]. A hybrid concept has
been developed [14]. A gravity compensator for a parallel mechanism is suggested using balance springs [15].

The energy method is recently utilized to obtain the spring coefficient of a gravity compensator [5,6,9,14,15]. Streit and
Gilmore proposed a design method considering potential energy in that the total potential energy of the springs and the
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manipulator mass has been investigated [16]. A design method for an n-spring balancer for a one-link system with two-dof
rotation has been proposed, wherein the spring parameters were derived by investigating a general expression of the total
potential energy [17].

Determination of the number of springs and their location is difficult in most cases, when the dof of a mechanism increases
and a mechanism has spatial motions. A design method has been proposed wherein springs are directly installed between
links for a planar manipulator, and the stiffness block matrix is suggested [18]. A design method in the basis of the space
mapping of is proposed which can determine the number and locations (or kinematic constraints) of unit gravity compensators
simultaneously [19]. Since only one-dof unit gravity compensators are utilized, impractical designs are suggested for a high-dof
manipulator. Thus, the gravity compensator space of Ref. [19] should be expanded to a multi-dof space to overcome limitations
originated from the one-dof unit gravity compensator space. Since various multi-dof gravity compensators exist, a general
expression of a multi-dof gravity compensator is necessary to overcome variety of multi-dof gravity compensators.

This paper proposes a design method of a static balancer with equivalent mechanisms. The design method in Ref. [19] is
applied to a multi-dof gravity compensator to obtain a general expression of a multi-dof gravity compensator. Note in this paper
that a gravity compensator means a mechanism externally attached to the mechanism to be balanced. By the space mapping
method, a multi-dof gravity compensator is decomposed with one-dof gravity compensators and a mapping relation is obtained.
In this paper the mapping matrix between multi-dof and one-dof gravity compensator spaces is called as the equivalent mapping
matrix. Thus, a multi-dof gravity compensator is equivalently represented with the one-dof unit gravity compensator space
with the equivalent mapping matrix.

To obtain a static balancer with equivalent mechanisms the design is performed only with the one-dof gravity compen-
sator space to determine the base mapping matrix between the joint and one-dof gravity compensator spaces at first. The base
mapping matrix is reconfigured with the equivalent mapping matrix. Thus, the multi-dof gravity compensators are applied to
a static balancer and the gravity compensator space is extended to the multi-dof space consequently. The face robot Mero in
Ref. [20] is considered as a design example. Various designs indicate that mechanical complexity decreases using multi-dof
gravity compensators. Computer simulations are conducted. Results of simulations show that the total potential energy is
invariant for all poses. Comparison of this paper with Ref. [19], various designs are enabled by applications of multi-dof gravity
compensators. One-dof gravity compensators are only utilized in Ref. [19], so one solution or design is only obtained. However,
various equivalent designs are suggested by the proposed design method in this paper, since various constituents (i.e., one-dof
and multi-dof gravity compensators) are enabled.

2. Design method with the space mapping

The design method in Ref. [19] is briefly introduced in this section.

2.1. Space mapping

Joint space is predetermined as H = [h1, h2, · · · , hn]T ∈ Rn×1, where hi denotes the rotation angle of the i-th joint and n
represents the number of joints. It is assumed that an unconstrained joint space is considered. The one-dof gravity compensator
space is determined as Hg1 = [hg1,1, hg1,2, · · · , hg1,p]T ∈ Rp×1, where hg1,j and p denote the rotation angle of the unit one-dof
gravity compensator and the number of rotation angles. The rotation angles of the gravity compensators (i.e., Hg1) are passively
determined by the pose of the mechanism (i.e., H). Thus, functions or relations exist between the joint space and the gravity
compensator space. Suppose that Hg1 is computed with H as follows:

Hg1 = JH + V (1)

where J ∈ Rp×n and V ∈ Rp×1. J denotes a mapping matrix between the joint space H and the gravity compensator space Hg1. V
represents a vector of constant phase angles.

2.2. Potential energy in both spaces

Let 0Pi be the position of mi with respect to the {0} frame. Then, the potential energy of mass mi is obtained by

Vm = −
n∑

j=1

mi • g • 0Pi (2)

where g represents the gravitation vector. 0Pi is computed from [0Pi; 1] =0 Ti[iPi; 1], where 0Ti =0 T1
1T2 · · ·i−1 Ti denotes the

homogeneous transformation matrix. Since 0Ti is determined by [h1, h2, · · · , hi]T, Eq. (2) represents the potential energy in the
joint space.
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