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We prove the NP-hardness of two fundamental problems in mechanism design. Given a set of
rigid parts and prescribed joints, the first problem consists in deciding whether there exists an
assembly of these parts matching the link constraints. Given a set of rigid parts and prescribed
joints with parameterized dimensions, the second problem consists in deciding if there exists
some dimensioningmaking the assembly mobile. The proof of hardness makes use of a reduction
from Partition Problem for the first problem and from 3SAT for the second one.
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1. Introduction

Motivated by its obvious practical significance, the design of mechanisms has given rise to many studies for over 150 years [1].
With the advent of Computer Aided Design software as universal tools for the design of parts and assemblies in the industry,
algorithms and methodologies have been proposed to support and partially automate the design of mechanisms: [2–5] to cite a
few of them.

In this work, the theoretical computer science point of view is adopted to investigate the complexity analysis of two problems
naturally arising in the automation ofmechanismdesign. Akin to this point of view are a few relatedworks in computational geometry
such as [6,7]. However, such approach is not common in the mechanical engineering community, which is more interested in practi-
cal, and therefore constructive, results.

Our results, Theorems 1 and 2, are complexity lower bounds and therefore negative results. But we believe that they improve
our knowledge of what can be reasonably expected from algorithms in computer aided mechanism design, which may prepare the
landscape for constructive results.

We call the first problem Realization of Prescribed Assembly Problem, or RPAP: given a set of rigid parts and joints with fixed geom-
etry, does a configuration (i.e. a rigid transformation for each part) that matches the prescribed link constraints exist? A practical
instance of this problem would be the following game. You are given a set of labeled bars with some labeled cylindrical holes and
cylindrical protrusions matching the holes' diameters. Moreover, you are given a kind of minimal assembly plan: the list of pairs of
part protrusion/part hole which must be plugged together. We prove that, even with this assembly plan, the game may be hard.
Indeed, any instance of the combinatorial Partition Problem, well known to be NP-complete, can be reduced to an instance or RPAP.

Our second problem, the ParameterizedMechanical LinkageMobility Problem, or PMLMP, addresses themobility of a parameterized
mechanism. Here parameterized mechanism means, as it is common in Computer Aided Design software, a set of parts and joints
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whose geometry is parameterized by a set of numerical variables, such as for example distances between joint anchor points. An
instance of a parameterized mechanical linkage consists of the particular geometry defined by the assignment of a value to each pa-
rameter. The parameterizedmechanical linkagemobility problem consists in deciding if there exists an instance of the parameterized
mechanismwhich ismobile, a mechanism being said mobile if the link constraints preserve at least one degree of freedom.We prove
that the 3SAT combinatorial problem can be reduced to the parameterized mechanical linkage mobility problem which is therefore
NP-hard.

We would like to warn the reader about the specificity of these results. The first difficulty is the introduction of algorithmic com-
plexity in the world of mechanical design. Algorithmic complexity is pure theory and deals with how a problem can be difficult to
solve rather than how to solve it. The second difficulty is the structure of an algorithmic complexity theorem. When reading for the
first time the proof of such a theorem, it sounds like an example or a particular case is detailed, which is always frustrating. Conse-
quently, we would give the following advice to the reader who is not familiar with algorithmic complexity. The basic reading level
is to understand the mechanical design problems under study (RPAP and PMLMP), and to admit that they are difficult to solve. The
advanced reading level is to figure out why RPAP and PMLMP are difficult to solve by understanding the particular assembly and
particular mechanism of the proofs and their articulation with the combinatorial problems. Anyway, the value for mechanical
designers is to keep in mind that an actual complexity is hidden behind their usual subjects of investigation.

2. Setting up a complexity theorem

The structure of a complexity theorem may look unusual to those who are not familiar with the field of theoretical computer
science, and the goal of this section is to clarify this point. The input is a problem, noted T, arising in a technical domain. The technical
domain of our purpose is mechanical design, but it can be of any kind: computer science, geometry, topology, graph theory, etc. The
open question is the complexity of problem T, more precisely, the complexity of the most efficient algorithm that can exist to solve
problem T: can it be a polynomial, exponential algorithm or whatever. The art of complexity theory is to provide an answer to this
question. First of all, the specialists of the technical domain conjecture a target complexity of problem T, NP-hard for our purpose.
Then, proving the conjecture “problem T is NP-hard” includes two steps. The first step is to select a combinatorial problem, noted
C, that is known to be NP-hard. The second step, named the “reduction from C”, is to design one particular case of problem T, noted
T′, that encodes problem C, meaning that problem T′ has a solution if and only if problem C has a solution. In addition, the proof
includes an investigation about the number of computing steps for the reduction, which must be a polynomial function of the data.
This completes the complexity theorem that states that problem T is NP-hard, as well as problem C.

The key point is that it is enough to select one particular combinatorial problem C and to design one specialization T′ of technical
problem T that encodes the combinatorial problem. Thus, if someone comes with an algorithm for solving problem T, then, this
algorithm must solve the problem T′ as well, which is equivalent to solving problem C.

Consequently, the next two theorems are organized by describing, each time, the technical problem T, the combinatorial problem
C, and the specialization T′ of technical problem T.

3. Parameterized mechanical linkage: formal definition

This section provides a formal definition of a mechanical linkage, the center object of our purpose. Despite that this concept is
familiar, it deserves a rigorous understanding. By definition, a mechanical linkage M is a six-tuple

M ¼ J;B; f ; L;D;Cð Þ

the features of which are defined as follows. The set

J ¼ j1; ⋯; jmf g

is a finite set. Elements of J are called joints. The set

B ¼ b1; ⋯; bnf g

is another finite set. Elements of B are called bodies. By definition B and J are disjoint sets. The mapping

f : J→B

associates a unique body to each joint. In other words, f( j) = b means that joint j belongs to body b. For each body b, one particular
element of f−1(b) is called the reference joint and is noted j0(b).

Now consider the set of couples of joints defined by

I ¼∪
b∈B

j0 bð Þf g � f−1 bð Þ− j0 bð Þf g
� �

:
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