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The dynamics simulation of multibody systems (MBS) using spatial velocities (non-holonomic
velocities) requires time integration of the dynamics equations together with the kinematic
reconstruction equations (relating time derivatives of configuration variables to rigid body
velocities). The latter are specific to the geometry of the rigid body motion underlying a particular
formulation, and thus to the used configuration space (c-space). The proper c-space of a rigid body
is the Lie group SE (3), and the geometry is that of the screwmotions. The rigid bodies within a
MBS are further subjected to geometric constraints, often due to lower kinematic pairs that
define SE (3) subgroups. Traditionally, however, in MBS dynamics the translations and rota-
tions are parameterized independently, which implies the use of the direct product group SO
(3) ×ℝ3 as rigid body c-space, although this does not account for rigid body motions. Hence,
its appropriateness was recently put into perspective.
In this paper the significance of the c-space for the constraint satisfaction in numerical time
stepping schemes is analyzed for holonomically constrained MBS modeled with the ‘absolute
coordinate’ approach, i.e. using the Newton–Euler equations for the individual bodies subjected
to geometric constraints. The numerical problem is considered from the kinematic perspective.
It is shown that the geometric constraints a body is subjected to are exactly satisfied if they
constrain themotion to a subgroup of its c-space. Since only the SE (3) subgroups have a practical
significance it is regarded as the appropriate c-space for the constrained rigid body. Consequently
the constraints imposed by lower pair joints are exactly satisfied if the joint connects a body to the
ground. For a general MBS, where the motions are not constrained to a subgroup, the SE (3) and
SO (3) × ℝ3 yield the same order of accuracy. Hence an appropriate configuration update can be
selected for each individual body of a particularMBS, which gives rise to tailored update schemes.
Several numerical examples are reported illustrating this statement.
The practical consequence of using SE (3) is the use of screw coordinates as generalized
coordinates. To account for the inevitable singularities of 3-parametric descriptions of
rotations, the kinematic reconstruction is additionally formulated in terms of (dependent)
dual quaternions as well as a coordinate-free ODE on the c-space Lie group. The latter can be
solved numerically with Lie group integrators like the Munthe-Kaas integration method, which is
recalled in this paper.
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1. Introduction

The seemingly simple problem addressed in this paper is how to numerically reconstruct the finite motion of a
constrained rigid body within a MBS from its velocity field so that the overall system of geometric constraints is satisfied.
When a rigid body moves it performs a translation together with a rotation since a general rigid body motion is a screw mo-
tion, with coupled rotation and translation. Even though standard numerical integration schemes for MBS neglect the geom-
etry of Euclidean motion in the sense that, within the integration schemes, the position and orientation updates are
performed independently. Whether or not their dependence is respected has to do with the geometric model used to repre-
sent rigid body motions, i.e. with the configuration space (c-space) Lie group. It is known that rigid body motions form the
Lie group SE (3) [50,59].

With the ‘absolute coordinate’ formalism (i.e. representing the spatial configuration of each body by a set of six generalized
coordinates) the equations governing the dynamics of a constrained MBS comprising n rigid bodies are commonly written in
the form

M qð ÞV̇þ JTλ ¼ Q q;V; tð Þ ð1aÞ
V ¼ A qð Þq̇ ð1bÞ

h qð Þ ¼ 0: ð1cÞ

The N= 6n dimensional coordinates vector q ¼ θi; rið Þ∈VN comprises the position vector ri and the vector θi consisting of
3 (or 4 dependent) rotation parameters for body i = 1,…, n, and V = (ωi, vi) ∈ ℝN is composed of the angular and linear ve-
locity vectors ωi and vi, respectively. The matrix J is the constraint Jacobian corresponding to the system (1c) of geometric
constraints.

Eqs. (1) constitute a DAE system on the coordinate manifold VN considered as vector space. From a kinematic point of view this
formulation raises two issues regarding their numerical solution:

1. The motion of theMBS is deduced from the velocity V by the kinematic reconstruction equations (1b). The accuracy of their numer-
ical solution depends directly on the underlying geometry of rigid body motions, which is encoded in the mapping A. In the stan-
dard MBS formulation the rotations and positions are reconstructed separately according to

ωi

vis

� �
¼ Bi θið Þ 0

0 I

� �
θ̇i
ṙi

� �
; i ¼ 1;…;n: ð2Þ

The underlying geometry is that of SO (3) ×ℝ3, which does not account for the coupling of rotations and translation inherent
to screw motions. Nevertheless, the kinematic (2) correspond to a valid parameterization of rigid body configurations. The
interdependence of ωi and vis is ensured by solving (1a) and (1c), and an analytic solution of (2) correctly reflects the bodies'
screw motions. However, when (1) are solved numerically with a finite step size, and (1b) is used to predict finite (screw)
motion increments, also the kinematic reconstruction equations (1b) must properly reflect the geometry of screw motions.
Moreover, (2) can only predict the finite motion if ri are the coordinates of a point on the rotation axis, as for instance in
the case of an unconstrained body with its body-fixed reference frame located at the COM. A generic motion of a
constrained body, as part of a MBS, will not comply with the decoupling assumption encoded in (2). The matrix B is specific
to the rotation parameterization. If Euler angles are used, for instance, B corresponds to the kinematic Euler equations [42].
Consequently, the kinematic reconstruction equations (1b) shall be amended in order to respect the interrelation of
rotationsand translations, which boils down to the appropriate choice of the rigid body configuration space being a Lie group.
The implications of using the Lie group SE (3) as well as SO (3) × ℝ3 are studied in this paper.

2. The second issue regards the violations of the constraints (1c) that occur when numerically solving (1). This has been a central
problem in numerical MBS dynamics. However, the investigations have exclusively been focused on reducing or correcting con-
straint violations bymeans of stabilization and projectionmethods [2–5,15,63] rather than aiming to avoid such violations. It is im-
mediately clear that the constraint satisfaction is affected by the accuracywithwhich the finitemotions are reconstructed from the
velocity field V solving Eq. (1a), which indeed depends on the feasibility of the relation (1b). Evenmore, besides the accuracy with
which the system dynamics is captured by the numerical integrator, it is crucial to ensure the kinematic consistency of the MBS,
thus the constraint satisfaction is imperative. This is the focus of this paper. In this respect it is important to observe that the ma-
jority of mechanisms is built with lower kinematic pairs (Reuleaux pairs). The latter are characterized by their isotropy groups, i.e.
subgroups of SE (3) leaving the contact surface invariant. It is clear that, if a numerical update step does not respect these motion
groups, the lower pair constraints will be violated.

The reconstruction equations (1b) represent a first-order relation, and from a computational perspective the question arises
whether the decoupling significantly affects the accuracy of the numerical solution of (1). The goal of this paper is to study the extent
to which different forms of this first-order relation affect the reconstruction of finite motions of a constrained MBS with numerical
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