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This paper studies the underlying theory of weight-balanced mechanism for the design of a
class of spatial mobile arm support (MAS), a spring assistive MAS. Conventional designs of
spring assistive MAS and their associated spring balancing techniques are analyzed based on
the stiffness matrix analysis in order to highlight the structural novelty of the proposed MAS
design concept. This MAS comprises two ideal zero-free-length springs directly installed to the
arm mechanism without using any auxiliary link. Through the passive assistance provided by
the springs, the MAS can facilitate the arm movement in space by the complete weight
compensation of the upper limb at any possible posture. The design is believed to have
benefited from its simple structure and the easiness of adjustment compared to other
conventional designs. The conceptual design of the MAS is proposed and followed with a
simulation model. The gravity balancing is verified with an example of a quasi-static motion.
The results show that the MAS is capable of fully balancing the weights of user's upper limb
and the device during the full range of motion.
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1. Introduction

Mobile arm supports (MASs) are themechanical devices that support the weight of the arm and so provide assistance to shoulder
and elbow motions through a linkage of low friction joints [1]. MASs were originally designed to increase independence for feeding
function, but they have subsequently enabled thousands of people with upper extremity impairments to achieve other functional
activities, including grooming, hygiene, writing, telephoning, household tasks, and recreational and vocational activities [2]. Various
types ofMASs have been proposed over years, such as the foot-operated feeder by theGeorgiaWarmSprings Foundation back in 1936
[3], the Barker Feeder by E. H. Barker at about the same time, the Jaeco MAS around 1950s [4], and recently the WREX [5,6], the
ARMON [7] and the Freebal [8].

Limitations of the traditional MAS design include its conspicuous appearance, problems of doorway clearance, and the
complexity of fitting the device for individual users to engage in particular activities. Nowadays, several applicable MASs are
preferably designed in form of passive exoskeleton devices, suggesting no actuators and sensors being used, these devices can be
safer, less expensive and even lighter. The exoskeleton-type MAS design is structurally and kinematically aligned to the arm of the
user, this facilitates in navigating the arm through doorways and narrow spaces, and also, the applied assistive forces can be
transmitted more uniformly on the subject's arm.

Without actuators and sensors, gravity balancing techniques are required to passively counterbalance the gravitational forces
of the arm and the MAS itself. Passive gravity balancing technique in mechanisms is able to achieve the complete gravity
compensation at any configuration of the mechanism. A MAS with passive gravity balancing function can provide the exact
amount of support at any possible posture of the arm without overstretching it. Passive gravity balancing technique encompasses
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a variety of methods, e.g. the counterweight methods [9,10], the cam linkage methods [11,12] and the spring balancing methods
[13–19]. Among these, the spring balancing methods are particularly favorable for the MASs since spring elements can be
generally benefited from the light weight, small additional inertia, easiness for adjustments and cheap cost.

Most conventional spring balancing techniques use auxiliary links or linkages added to the mechanism to provide suitable
attachment points for the springs [15–19]. However, the auxiliary links increase the system inertia as well as its structural
complexity. This paper discloses the underlying theory of some of the famous spring balancing techniques and presents a
theoretical study for the design of a class of a spatial spring assistive MAS without using auxiliary links, which is believed to be a
novel design concept, simple in structure, and easy to be adjusted for individuals of distinct arm length and weight.

The layout of this paper is as follows. Section 2 presents the principle of gravity balancing techniques with springs. A general
gravity-spring system is described by a stiffness matrix proposed by Lin et al. [14]. In Section 3, two existing spring balancing
techniques using the auxiliary link method, which are both applied to planar 2-DOF (degree of freedom) serial kinematic chains,
are investigated. In Section 4, a planar 2-DOF spring balancing arm without using auxiliary links is proposed. In Section 5, the
planar 2-DOF design is extended to a spatial 4-DOF MAS by two additional rotational DOFs on the shoulder to accommodate the
spatial kinematics of the upper extremity. With only two embedded springs, the 4-DOF MAS is capable of achieving static balance
in spatial motion. In Section 6, a methodology for tuning the level of gravity compensation is proposed. The MAS is modeled and
simulated in ADAMS. The simulated results shown in Section 7 justify the gravity balancing capability of the design.

2. Principle of gravity balancing with springs

2.1. The stiffness block matrix representation

To generally describe the configuration of a planar n-link articulated mechanism, let qi be a unit vector fixed on link i (i=1, 2,
…, n) of the mechanism where link 1 is ground. The n-dimensional vector space spanned by q1, q2,…, qn defines the configuration
of the mechanism. In the system, assume that all springs are zero-free-length springs working within their linear ranges, and the
spring forces and the gravitational forces are conservative forces and configuration dependent. Hence, any force vector f, can be
expressed in a linear combination of qi's as

f ¼ ∑
i
Fiqi ð1Þ

where Fi is a 2×2 constant coefficient matrix of qi, representing the rotation and scaling of qi.
Denote p as the position vector from the origin of the global coordinate system to the point where the force f is applied. For

example, if f is the gravitational force of a link and p is the position vector of the mass center of the link, p can be expressed
as

p ¼ ∑
i
Piqi ð2Þ

where Pi is a 2×2 constant coefficient matrix of qi, representing the rotation and scaling of qi.
Hence, the potential energy contributed by the forces and their associated positions can be obtained as

U ¼ ∫fTdp ¼ ∑
i;j

qi
TKijqj ð3Þ

where Kij is a 2×2 constant matrix derived from Eqs. (1) and (2) as

Kij ¼ Fi
TPj: ð4Þ

Component matrix Kij is the potential energy due to a relative angular position θij=cos−1(qi
Tqj) of links i and j, and is also

referred to as the stiffness component matrix between links i and j [14]. Hence, matrix Kij is in energy unit, e.g. N–m.
In the spring-gravity system, both the gravitational potential energy UG and the elastic potential energy UE can be expressed in

the form of Eq. (3). The total potential energy of the system UT, i.e. the sum of UG and UE, can be further written in a block matrix
form as

UT ¼ 1
2
QTKQ ð5Þ

where K and Q are respectively 2n×2n and 2n×1 matrices as

K ¼ Kij

h i
ð6Þ

Q ¼ qi½ �: ð7Þ
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