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A three dimensional large deformation meshfree simulation of concrete fragmentation is presented by
using a nodally regularized Galerkin meshfree method. This nodally regularized meshfree method is
established with the two-level Lagrangian nodal gradient smoothing technique to relieve the material
instability in failure modeling. The rate formulation is employed for the treatment of large deformation
and therefore the two-level gradient smoothing is performed for the rate of deformation tensor and the
deformation gradient. The essential characteristic of the present approach is that all the variables are
conveniently computed at the meshfree nodes, which allows an efficient evaluation of the Galerkin weak
form. The concrete failure is described by the KCC concrete model with three independent strength
surfaces. This model has a pressure dependent evolving failure surface that is built with an internal
damage variable. The computational implementation of the given concrete model within the context
of meshfree formulation is discussed in detail. The effectiveness of the present method is demonstrated
through several numerical examples of concrete structures.

Keywords:

Meshfree method

Two-level nodal gradient smoothing
Fragmentation

Concrete structure

Stabilized conforming nodal integration

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Concrete structure is one of the most frequently used engineer-
ing infrastructures and thus the modeling and analysis of concrete
structures are of great importance [1]. The complex behaviors of
concrete severely limit the analytical study and consequently the
numerical modeling becomes a valuable and indispensable tool
to investigate the concrete structures. A salient feature in concrete
structural analysis is the brittle failure modeling [1]. One way for
the failure modeling is to explicitly track the crack path, in present
the extended finite element method [2,3] is one of the most popu-
lar approaches of this kind. Several meshfree and enriched/
extended meshfree approaches [4-9] have also been introduced
for explicit tracking of crack propagation. Alternatively, the failure
may be implicitly treated by the phase-field modeling [10,11] or
the damage mechanics formulation [12,13], among others. Here
we employ the KCC concrete model with damage [14,15] to
describe the concrete failure process since it can be conveniently
implemented into a classical pressure-dependent elastoplasticity
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formulation. This model inherits an internal damage variable in
its failure envelope and three independent strength surfaces are
calibrated from the test data to model the failure evolution.

As for the computational concrete modeling, despite of the
rapid development of various methods such as meshfree methods
[16-18], extended finite element methods [2,3]| and isogeometric
analysis methods [4], we concentrate on the meshfree methods
due to their global smoothing approximation, local refinement
flexibility, and robustness in large deformation simulation [19-
25]. The dynamic fracture in concrete was analyzed by Belytschko
et al. [26] with the element free Galerkin method that was also
used by Schwer et al. [27] to simulate the dynamic uniaxial tension
test of concrete. A large deformation Lagrangian meshfree method
was presented by Wu et al. [28] to deal with static modeling of
geomaterials. Rabczuk and Eibl [29,31], Rabczuk et al. [30] and
Rabczuk and Belytschko [32] carried out the high velocity concrete
fragmentation analysis using the smoothed particle hydrodynam-
ics and moving least square smoothed particle hydrodynamics
methods. Meanwhile, Rabczuk et al. [33] and Rabczuk and
Belytschko [34] have simulated the penetration/perforation on
concrete structures as well with the element free Galerkin method,
in which the residual velocity and energy balance were studied in
detail. The meshfree simulations of plugging failures in high-speed
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impacts have been presented by Ren and Li [35]. A coupling of
smoothed particle hydrodynamics and finite element methods
was employed by Caleyron et al. [36] for reinforced concrete mod-
eling which is also analyzed using a finite element material point
method by Lian et al. [37]. Recently a meshfree meso-macro-
multiscale method was proposed for concrete fracture analysis [38].

The meshfree methods we shall use are the Galerkin meshfree
methods with moving least square [16] or reproducing kernel
[17] approximations, which are equivalent for the monomial basis
functions. One issue associated with the Galerkin meshfree meth-
ods is the high computational cost. Different methods have been
proposed to improve the meshfree efficiency, particularly the
nodal integration based meshfree methods. A direct nodal integra-
tion of the Galerkin weak form leads to the rank deficiency which
can be corrected by adding residual terms [39] or stress points
[40]. However these corrections may need artificial parameters
or sacrifice the nodal integration nature. The stabilized conforming
nodal integration (SCNI) developed by Chen et al. [41,42] bypasses
this difficulty through a strain smoothing formulation [43], where
the rank stability, linear exactness and nodal integration is uni-
formly achieved [44]. This approach has been successfully devel-
oped and generalized to many problems [45-52]. In case of
fragment-impact problems, a semi-Lagrangian reproducing kernel
particle method with SCNI and SNNI (stabilized nonconforming
nodal integration) was proposed by Guan et al. [53], where
extreme deformation and self-contact can be naturally dealt with.
Wau et al. [54,55] developed a point-wise coupled reproducing ker-
nel-finite element formulation to study the fragmentation and
debris evolution process. In order to further regularize the material
instability in damage modeling and resolve the discretization sen-
sitivity issue in damage analysis, based upon the implicit regular-
ization methodology developed by Chen et al. [43,62], Wang and
Li [56] and Wang et al. [57] proposed a two-level strain smoothing
meshfree approach within the stabilized conforming nodal integra-
tion framework [41,42].

In this work the two-level nodal strain smoothing formulation
[56] is employed to develop a nodally regularized large deforma-
tion meshfree method for concrete failure simulation. The concrete
failure is described by the pressure dependent KCC concrete model
[14,15]. This model builds the damage into the evolution of failure
surface which provides a significant computational convenience.
Herein the concrete model is equipped with the rate formulation
to deal with the large deformation effect. The two-level smoothed
nodal rate of deformation tensor and the deformation gradient are
systematically introduced into the objective integration of consti-
tutive equations. The implementation of the concrete model is dis-
cussed in detail with particular reference to the update of state
variables. All the variables are carried by the meshfree particles
as offers an obvious computational advantage.

The organization of the rest of this paper is as follows. The
Lagrangian meshfree approximation is briefly discussed in Section 2.
In Section 3, the concrete equations are presented in detail with
particular emphasis on the concrete model used in this study. In
Section 4, the two-level smoothed nodal rate of deformation tensor
and the deformation gradient are firstly introduced, as is followed
by the nodally regularized meshfree discretization of the equation
of motion with two-level smoothed measures. The capability of
the proposed method is demonstrated in Section 5 through numer-
ical examples. Finally Section 6 gives the conclusions of this work.

2. Lagrangian meshfree approximation
In this study the Lagrangian formulation is adopted and the ini-

tial problem domain is denoted by X € Q4 that is mapped to the
current configuration x € Q. In a Lagrangian meshfree approximation

[18], the initial configuration € is discretized by a set of meshfree
particles {X,}}", and each particle X; = (X, Y}, Z;) has a local support
of supp(X;) which is defined through the positive kernel function of
V(X; — X) such that UM, [supp(X))] D €. In practice, the 3D kernel
function Y(X; — X) is often constructed by the tensor product
operation on its one dimensional counterparts in three dimensions,
respectively, i.e.,
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where sy, Sy and s; are the support sizes for each dimension. Here
Y(0) is taken as the cubic B-spline function [22]:
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Then a meshfree approximant of a field variable %(X), say #(X),
can be assumed to take the following form [16-18]:

X)) =Y VX 3)
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with

Yi(X) = (X1 = X)p(X; — X)c(X) (4)

where ¥(X) and ¢; are the meshfree shape function and nodal coef-
ficient, SI(X) = {I|X € supp(X)}. ¢(X) is an unknown vector. p(X) is
the n-th order monomial basis vector:

pX)={1,X,Y,Z.X* ...,Z2" (5)

Subsequently in order to solve ¢(X), the following n-th order repro-
ducing conditions or consistency conditions are enforced.

S WX)XPYPZE =XNYYZ, 0<ny+ny+nz<n (6)
1SI(X)

For convenience of expression, Eq. (6) can be equivalently cast into
a vector form as:

> ViX)p(X; - X) = p(0) @)
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Thus substitution of Eq. (4) into (7) leads to

M(X)c(X) = p(0) (8)

with

MX) = > pXi = X)p" (X — X)by(Xi — X) 9)
IeSI(X)

From Eq. (8) we solve:
c(X) =M (X)p(0) (10)
and consequently obtain the meshfree shape function ¥(X) as:

Pi(X) = p" (O)M " (X)p(X; — X)ys(X; — X) (11)

3. Concrete equations

The motion of a concrete structure is governed by the following
weak form via the updated Lagrangian formulation:

/pau.ﬁd9+/(v§5u) :o-dQ—/b‘u-bdQ
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where p is the concrete density referring to the current configura-
tion, u is the displacement vector, the overhead dot denotes the
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