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a b s t r a c t

A multiscale aggregating discontinuities method for treating unit cells which undergo material failure is
further described; the method can also be used when the material response predicted by the unit cell
loses rank-one stability. Its notable features are the decomposition of the unit cell response into a
continuous and a discontinuous response, and the extraction of the equivalent discontinuities by
coarse-graining procedures. In this study, the method is further combined with the extended finite
element method for macro model and the cracking nodes method for micro model so that arbitrary
discontinuities in the macro and the micro models can be treated free from the initial mesh topologies.
The examples that are studied include a composite with circular inclusions and a micro cracking solid
with an emerging macro failure.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Computational multiscale analysis for predicting failure of
materials is of great importance in evaluating and designing
mechanical products. Physical processes such as micro cracking
and material damaging, which govern the material failure of these
systems generally, occur on too small of a scale to be considered in
standard engineering analysis. The ability to simulate failure
without extensive experimental testing hinges on the development
of methods that can incorporate these physical processes into the
description of the standard engineering analysis.

Computational modeling and reliable prediction of failure for
various materials remain highly problematic and are some of the
biggest challenges in computational mechanics. Several classes of
multiscale methods have been proposed; the taxonomy of the
multiscale methods can be found in Belytschko and Song [1]. How-
ever, most of the conventional multiscale methods such as those
described in Zohdi and Wriggers [2], and Nemat-Nasser and Hori
[3] are limited to the computation of effective material properties,
i.e. homogenized material constitutive laws, or the prediction of
the macro scale behaviors before failure regime. When failure
progresses beyond a critical point at the micro scale, the tangent
stiffness of the unit cell loses its positive definiteness. As a conse-
quence, the corresponding material models at the macro scale lose
rank-one stability, and unless some modifications are made to the

classical continuum formulation, the problem, broadly speaking, is
no longer well-posed.

In this study, we attempt to circumvent these difficulties with
multiscale aggregating discontinuities (MAD) method [1,4–6] in
conjunction with the extended finite element method (XFEM)
[7,8] to model the equivalent discontinuities at the macro scale
and the cracking node method [9] to model material failure
behaviors at the micro scale.

The MAD approach we are taking is closely related to the FE2

approach of Feyel and Chaboche [10] and Feyel [11]. The micro
scale model is not a representative volume element at a scale much
smaller than the macro model as is common in homogenization
theories. Instead, the micro model can only be one scale smaller
than the scale of the macro model and must be the same scale as
the elements in the macro model. However, the notable feature
of the MAD method is the decomposition of the deformation of
fractured unit cells into an equivalent discontinuity and a homog-
enous deformation. Three key concepts are fundamental to the this
method: the perforated unit cell, coarse-graining an equivalent
discontinuity at the macro scale, and coupling of the hourglass
mode displacement to the unit cell.

In this paper, we describe a method wherein failure in the micro
model, as predicted by a unit cell, is treated by an injected discon-
tinuity and an implicitly passed cohesive law at the macro scale.
The transformation of micro cracks is accomplished via a coarse
graining procedure of the discontinuities of unit cells. The method-
ology is particularly useful for situations where many micro cracks
nucleate and grow in the unit cells. The method then aggregates
the cracks (discontinuities) into a single discontinuity at the macro
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scale; therefore, we call the method multiscale aggregating discon-
tinuities method. The effectiveness of this method is demonstrated
with several examples by comparing the multiscale analysis
results with direct numerical simulations.

2. Overview of the multiscale aggregating discontinuity method

In the multiscale aggregating discontinuities (MAD) method,
the coarse scale model is linked to unit cells with fine scale details.
Generally, these unit cells are only needed for ‘‘hot spots’’, i.e.
where a preliminary computer simulation indicates that material
failure is likely. During the computation, the effect of an arbitrary
number of crack growths at the micro unit cell model is aggregated
into an element-wise equivalent discontinuity in the macro finite
element as shown in Fig. 1.

At each linked macro element, the macro model passes a
measure of deformation to the linked unit cell, and then receives
stress from the unit cell; for the measure of the deformation and
the stress, the deformation gradient, F , and the second Piola-Kirc-
hoff stress, P, are respectively used so that the method is applicable
to large deformations and material nonlinearities. The boundary
condition of the unit cell is then prescribed by

umðXÞ ¼ ðFM � IÞ � X þ qMXYðXÞ X 2 Cm ð1Þ

where um is the displacement field for the micro model boundary, I
is the second order identity tensor, qMXY is the hourglass mode
displacement field to represent crack opening in the micro model
and Cm is the boundary of the unit cell. Note that we used a super-
script m and M to denote variables associated with the micro and
the macro model, respectively.

The MAD method is mainly based on three key concepts:

(1) The perforated unit cell; all subdomains of the unit cell which
have lost material stability are excluded from the definition
of the average stress and strain.

(2) The equivalent discontinuity; a coarse-grained discontinuity,
i.e. an equivalent discontinuity, is extracted from the
difference between the deformation of a macro element
and its associated unit cell; note that this coarse-graining
procedure is accomplished by using a form of Hill’s theorem.

(3) The hourglass mode displacement; the hourglass mode
displacement field is superimposed along the unit cell
boundary to properly account for the bilinear motion of
the unit cell boundary due to crack opening.

2.1. The perforated unit cell

For the illustration of the perforated unit cell, let us consider a
unit cell such as that shown in Fig. 2(a). The unit cell contains a
discontinuity CD

0 and a damage localization band XL
0; it is assumed

that the width of the localization band is small compared to the
dimensions of the unit cell.

In the perforated unit cell, all subdomains which have lost
material stability, i.e. cracks and damage localization bands, are
excluded as shown in Fig. 2(b); i.e. ~Xm

0 ¼ Xm
0 n ðC

D
0 [XL

0Þ, and then
the averaging operation for any given function f ðXÞ is defined by

hf ðXÞi ¼ 1
k~Xm

0 k

Z
~Xm

0

f ðXÞdX ð2Þ

where k � k denotes the measure of the domain, which is the area in
two dimensions and the volume in three dimensions. Note that in
contrast to conventional multiscale analysis methods, the averaging
operation is performed over the perforated unit cell domain ~Xm

0 .
In terms of the averaging operator defined in Eq. (2), the

average bulk strain in the micro model is given by

hFmi ¼ 1
k~Xm

0 k

Z
~Xm

0

Fm dX ð3Þ

We define the bulk strain in the macro model to be the average
strain of the linked micro model:

Fig. 1. Schematic of the multiscale linkage between macro and micro models.

Fig. 2. Schematic of: (a) a typical micro model with material failure and (b) its
corresponding perforated unit cell domain.

Fig. 3. Schematic of: (a) a typical failure pattern in the micro model and (b) its
coarse-grained equivalent discontinuity in the macro finite element.
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