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a  b  s  t  r  a  c  t

The  tip-based  vibration-assisted  nanomachining  process  can  fabricate  three-dimensional  (3D)  features
with nanometer  scale  resolution.  To  control  the  feature  dimension  accurately  in  process  planning,  we
need to understand  the  relationship  between  feature  dimension  and  machining  parameters  including  set-
point  force,  XY  vibration  amplitude  and  feed  rate. In  this  article,  we  conducted  full  factorial  experiments
to  analyze  the  relationship  between  feature  dimension  and  machining  parameters.  Based  on analysis
of  variance  (ANOVA),  we  determined  the  significant  factors  in determining  the  feature  dimension.  The
feature  width  is  mainly  controlled  by XY  vibration  amplitude,  and  the  feature  depth  is  controlled  XY  vibra-
tion,  setpoint  force  and  feed  rate.  In order  to predict  the  feature  dimension  in  nanomachining  and  provide
instructions  for machining  parameter  selection,  a semi-empirical  mechanical  model  was  built  first.  Then
simplified  regression  models  were  also  investigated,  with  all models  displaying  good  predictive  capa-
bility.  The  results  show  good  fit  between  predicted  feature  depth  and  measured  feature  depth,  for  most
machining  conditions.  These  models  provide  good  capability  in  process  planning  for  implementation  of
this  process.

©  2016  The  Society  of  Manufacturing  Engineers.  Published  by Elsevier  Ltd.  All rights  reserved.

1. Introduction

Machining process modeling have been heavily studied in con-
ventional scale, with many of these studies examining the modeling
of cutting force and the prediction of the feature dimension after
machining. Researches on modeling of dynamic metal cutting pro-
cess is summarized [1], mechanical modeling approach has been
used to predict the cutting force for the ball end milling processs
[2]. Cutting force models have been used to increase the mate-
rial removal rate [3], and mechanistic methods have been widely
applied for the force predictions and prediction of the associated
tool deflections [4] and surface geometrical errors [5].

Besides mechanical modeling, simulation methods have also
used in the study of machining process. A surface topography
simulation was studied to simulate the finish profile generated
after a turning operation [6]. Finite element (FE) simulations were
applied to analyze the orthogonal cutting process [7]. Predictions of
machining induced micro hardness and grain size are performed by
using 3D finite element (FE) simulations of machining and machine
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learning models, which have been adapted to predict machining
induced micro hardness and grain size [8]. Finite element simula-
tion has applied to predict cutting force, tool stress and temperature
in high-speed flat end milling [9]. Cutting force and chip formation
under different tool edge geometry in the orthogonal machining
process was analyzed with finite element method [10].

Statistical modeling approach has also been widely used to study
the machining processes. Statistical models and artificial neural
networks have been compared for predicting tool wear in hard
machining [11]. Optimal cutting conditions for surface roughness
were investigated using response surface methodology [12]. Cut-
ting conditions for the hard turning process was optimized using
analysis of variance (ANOVA) and experimental design methods
[13].

Processing modeling at nanomater scale is very difficult, due to
the complex physics involved in the process. Molecular dynamic
simulation is a useful method to study the machining process
from the aspective of molecular responses to the process input. At
the nanometer scale, the nanomachining of copper was simulated
with molecular dynamics method [14]. Molecular dynamics sim-
ulation was also used to study the chip formation process during
nanomachining [15], while this method can give predictive results
for feature dimension after machining, it is computaional intensive
and time consuming, which limit its application to relatively simple
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Fig. 1. Experimental setup. (a) The vibration assisted tip-based nano machining system. The AFM system was customized, and signal feedback system was added. (b)
Schematic illustration of tip movement in the XY plane. (c) The top view of machining process.

process. Exprimental modeling has slo been applied for nanoma-
chining process. The effect of major scratching parameters on the
nano structure was studied to estimate the force needed to scratch
features with desired dimensions [16].

In this research, feature dimension prediction models of tip-
based nanomachining process are developed and validated. We  first
use analysis of variance (ANOVA) method to determine statistically
significant factors that influence feature dimensions, and then built
a semi-empirical model to describe the relationship between fea-
ture dimension and machining parameters. Then simpler linear and
nonlinear regression models were built to be compared with semi-
empirical model. The effectiveness of these models was verified
using experimental data.

2. Machining setup and experimental design

2.1. Machining setup

The experimental setup includes a commercial AFM, Park XE-70
(Park Systems Corp®), and a customized nano-vibration system, as
shown in Fig. 1(a). The detailed description of the nanovibrator has
been previously reported [17]. The Signal Access Module from the
Park Systems obtain the normal and lateral forces during nanoma-
chining process, which are measured by cantilever deflection and
torsion from the photo detector. The machining force measured
from cantilever deflection and torsion are acquired by LabVIEW
during machining through a data acquisition device (NI USB-6259),
which is also used to generate a synchronized sinusoid signal with
90◦ phase difference to control the vibration of XY-piezoactuators
as shown in Fig. 1. A tapping mode cantilever with a nominal stiff-
ness of 48 N/m and resonant frequency of 190 kHz is used in this
study. The sample is mounted on the top of the nanovibrator, which
is vibrated in the XY plane with the frequency of 2 kHz. In our exper-
iment, vibration-assisted nano machining is applied to (PMMA)
film. The PMMA  film (950PMMA A4 as a 2% dilution in anisole)
is spin-coated on a cleaned silicon substrate for 40s at 4000 RPM,
and baked at 180 ◦C for 90 s. The thickness of PMMA  is 40 nm and
the machinable area is 2 �m × 2 �m.

During the machining process, the force applied by the tip to
the sample is determined by setpoint force of the AFM, which

corresponds to the deflection of cantilever. The larger setpoint
force induces the larger interaction force between AFM tip and
sample surface, which will produce the larger feature depth. As
shown in Fig. 1(b), the sample was actuated by the nanovibrator
to provide a XY in-plane vibration, thus the width of the feature
is regulated by XY vibration amplitude. With high frequency cir-
cular XY-vibration, only a thin slice of material is removed in one
machining cycle, which greatly enhances the machining speed and
reduces tip-sample interaction force. Diameter of the virtual tool is
controlled by the XY-vibration amplitude, which directly regulates
the feature width that can be machined in one single machining
path. Feed rate is the relative velocity of the AFM tip in the direc-
tion of machining. With larger feed rate, the AFM tip moves faster
on the sample surface, and more material (feed per rotation) is
removed in a revolution. The purpose of this study is to deter-
mine the relationship between feature size and machining inputs
parameters.

2.2. Experimental design

To fully understand the relationship between feature dimension
and machining input parameters, a full factorial design was  devel-
oped. The machining input parameters include the setpoint force,
the XY vibration amplitude and feed rate. From our preliminary
experiments, we determined the feasible range of each parame-
ter to machine an observable feature. For each input parameter,
we set three different values corresponding to low, medium and
high values of the parameter, yielding a 33 full factorial design. The
full experimental design is given in Table 1 below. The machined
features are scanned with the same AFM, and for each feature, we
measure 10 times from randomly selected positions, with the mean
values used for our analysis.

Table 1
Full factorial 33 experimental design.

Factor Levels

Setpoint force (nN) 120, 140, 160
XY  vibration amplitude (mV) 35, 50, 65
Feed rate (�m/s) 0.6, 1.0, 1.4
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