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A B S T R A C T

The objective of this study is to investigate the relationship between the melt pool characteristics and the defect
occurrence in an as-built additive manufacturing part. One of the major detrimental microstructure properties
associated with additive manufacturing (AM) is porosity within final parts. State-of-the-art porosity detection
methods focus primarily on post-manufacturing approaches that are susceptible to high cost of process, longer
process time, and are incapable of characterizing pores during fabrication. A real-time porosity prediction
method is developed using morphological characteristics of the melt pool boundary (i.e., features obtained via
functional principal component analysis (FPCA)). A thermal monitoring system is used to capture the time-
varying melt pool signal, which are labeled as either pores or normal melt pools by X-ray tomography.
Supervised learning methods are utilized to identify the patterns of melt pool images and build a black-box
model for the probability distribution of class labels (namely, porosity) based on data characteristics of pre-
dictors (e.g., melt pool characteristics). The resultant model does not depend on specific design of specimens
with varying material properties; and can be effectively developed as long as thermal-porosity data can be
obtained. In the current study, multiple supervised machine learning approaches are used to classify melt pools
to predict porosity in a part. Two different accuracy measures are used and numerical experiments show that
among the classification approaches used (i.e., Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector
Machine (SVM), Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis (QDA)), KNN results
in the highest rate of accurately classifying melt pools (98.44%). However, DT results in the lowest rate for
incorrectly identifying normal melt pools as pores (0.03%). A comparative study is conducted that compares the
performance of supervised learning methods leveraging the proposed morphological model and simple metrics
of the melt pool. Numerical experiments show that the morphological model combined with supervised learning
techniques vastly outperform the simple melt pool metrics combined with supervised learning techniques (ap-
proximately 250% better performance for correctly predicting abnormal melt pools). Our approach may po-
tentially be applied to other AM processes that share similar energy-material interactions (e.g., powder bed
fusion, electron beam melting).

1. Introduction

The inadvertent defects of additive manufacturing (AM) parts result
in low repeatability of AM products, which prevents wider adoption of
AM technologies. One of the more detrimental microstructural prop-
erties associated with AM is porosity within final parts. The existing
methods of defect detection/characterization mainly rely on post-man-
ufacturing methods, such as X-ray computed tomography (CT), ultra-
sonic inspection, and many more [35,51]. However, these post-

manufacturing techniques are extremely expensive and time-con-
suming. Hence, there is an imperative need to develop methods for
online detection/control of defects during the build. Establishing a
quantitative relationship between the characteristics of melt pools and
the formation of porosity in the as-built parts during the fabrication
provide a rational solution to this predicament.

The characteristics of melt pools are expected to be highly corre-
lated to abnormalities of microstructure, and thus defects in the fabri-
cated parts [5]. Finite element modeling (FEM) has been developed to
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characterize the underlying thermo-physical process of AM, and predict
the evolution of microstructure [14,70]. These methods are mainly
developed according to the specific part designs (e.g., cube, thin wall).
Hence, tremendous efforts are needed to model the thermo-mechanical
process while fabricating parts with complex geometries. Moreover,
due to the deterministic nature of most FEMs, process uncertainty is not
taken into consideration. The predicted microstructure and mechanical
behaviors tend to deviate from the actual manufacturing. Last but not
least, FEMs usually require high computational costs, which will be
difficult to implement for real-time monitoring/control.

To circumvent the challenges of modeling the complex thermo-
physical process, supervised machine learning can be utilized to iden-
tify the patterns of melt pool images and its relationship to porosity.
Melt pool morphological characteristics play a crucial role in de-
termining the thickness of deposited layers, the microstructure evolu-
tion, and the pore formation. This has been studied extensively in
[11,13,61]. Supervised learning builds a black-box model for the
probability distribution of class labels (namely, porosity) based on data
characteristics of predictors (e.g., melt pool characteristics). The class
labels are defined as binary random variables that give the value of 1 if
the melt pool is identified as porosity, and 0 otherwise. The resultant
model does not depend on the specific design of specimens of material
properties and can be effectively developed as long as thermal-porosity
data can be obtained. To establish an accurate supervised learning
model, a major challenge must be addressed: melt pool signals are re-
presented by high-resolution images with varying sizes and shifting
centers due to the dynamic thermal process. Using such ill-structured
melt pool signals as predictors directly causes issues such as co-linearity
and curse-of-dimension, which affects the prediction accuracy. Hence,
dimension reduction and feature extraction procedures are needed to
develop a structural predictor that captures the critical characteristics
of melt pools. To address this challenge, we develop a methodology
based on functional principle component analysis (FPCA), which ex-
tracts key characteristics of melt pools and converts it to smooth
functional curves. The first few principle components (PCs) of these
curves represent the major sources of variation in the thermal history,
and thus are used as the predictor of porosity. It is shown in Section 3
that principle components (PCs) of melt pool images can potentially
distinguish normal melt pools from abnormal ones.

Once the melt pools are labeled via X-ray tomography, we apply
multiple classification methods (i.e., Decision Tree (DT), K-Nearest
Neighbor (KNN), Support Vector Machine (SVM), Linear Discriminant
Analysis (LDA), and Quadratic Discriminant Analysis (QDA)) to estab-
lish the relationship between the PCs of melt pool images and the
binary response that indicates the formation of porosity at the corre-
sponding location. Cross validation is used for parameter tuning and
model validation. In particular, the classification models are trained
based on a randomly selected subset of the data and tested based on the
remaining dataset. This procedure is repeated for multiple times to
ensure that each data point is selected for both model training and
testing. Fig. 1 accounts for overall machinery of the supervised learning
methods for porosity prediction.

We compare the accuracy of the proposed method that utilizes
comprehensive melt pool characteristics with simple metrics of the melt
pool such as length, width, peak temperature, area, etc. [36,51]. Results
show that porosity prediction using the simple metrics of the melt pool
produces very poor accuracy measures compared to the morphological
characteristics of the melt pool. In summary, the technical contributions
of this study to the existing literature are as follows:

1. We develop a novel data processing method for reducing the di-
mension of the thermal image data and extracting features relevant
to the generations of porosity in the as-built parts.

2. The proposed method is compared with the studies in the literature,
which mainly use the simple characteristics for thermal monitoring
and control. Although such characteristics provide general

information about the stage of the process, our comparison shows
that using such simple characteristics are not sufficient for porosity
prediction.

3. The proposed machine learning method for porosity prediction re-
sults in high recall value (98.44%), which provides a means to cir-
cumvent time-consuming porosity characterization.

4. Five supervised learning classification methods (i.e., Decision Tree
(DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM),
Linear Discriminant Analysis (LDA), and Quadratic Discriminant
Analysis (QDA)) have been investigated. The most suitable classifi-
cation methods for thermal-porosity relation have been identified
and recommended.

2. Literature review

In this section, we survey the papers that investigate the melt pool
quantification and characterization as well as discuss the existing por-
osity detection techniques. This section is divided into two sub-sections,
i.e., (1) existing porosity detection techniques and (2) quantifying and
characterizing the time-varying melt pool.

2.1. Existing porosity detection techniques

The existing literature on porosity detection techniques can be
broadly classified into three major areas: (1) porosity detection tech-
niques based on post-manufacturing characterization, (2) visual based
porosity detection techniques, and (3) simulation based porosity de-
tection techniques.

2.1.1. X-ray computed tomography and ultrasonic
X-ray computed tomography or ultrasonic techniques have been the

major mechanisms that are extensively used for post manufacturing
characterization while detecting porosity. Many researchers have pro-
vided a higher level overview on the operations of the machine and
how it can contribute to detect porosity in the parts. For instance, the
benefits of using flash thermography against other approaches such as
ultrasonic attenuation estimation have been investigated by Meola and
Toscano [44], where the authors show that flash thermography is non-
contact, cost-effective, and fast compared to other approaches. Through
experiments, the authors have also found that by flash thermography, a
part can be inspected while viewing the smooth or the rough side in-
differently. For three-dimensional (3-D) defect characterization, ana-
lysis, and visualization, Wells has showed X-ray computed tomography
modality using advanced Volume Graphics StudioMax (VGSM) voxel
analysis and visualization software [68]. Porosity and some inclusions
have been found in this study and the total defect level has been found
to be 1.11% of the total casting volume. X-ray computed tomography
method, involving image enhancement and ring artifact removal prior
to image segmentation, has been proposed by Cai et al. [6], where the
authors investigate the effect of process parameters on material por-
osity. The authors validate the superiority of X-ray computed tomo-
graphy over other conventional methods through several experiments.

Ultrasonic methods are primarily used for analyzing the porous
structure, mechanical strength, and to detect internal defects [39]. Kim
et al. [36] have investigated the procedure for estimating the porosity
content of composite materials, which relies on the decomposition of
the original ultrasonic pulse-echo signal into a sum of elementary wa-
velet contributions. This results in the reduction of complicated func-
tions into several simpler ones, which are studied separately later. Eren
et al. [16] propose three different ultrasonic approaches for char-
acterizing porosity as well as for detection and imaging of different type
of defects in the ceramic materials. Among the three approaches, the A-
scan analysis has been found to be better suited for the detection of
different type of defects in the ceramic tiles with a contact high-fre-
quency longitudinal wave transducer. Air-coupled ultrasound is sui-
table for non-contact detection and the imaging of defects in ceramic
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