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A B S T R A C T

Unexpected component failures in a mechanical system always cause loss of performance and functionality of
the entire system. Condition-based maintenance decisions for a multi-component mechanical system are chal-
lenging because the interdependence of individual components’ degradation is not fully understood and lack of
physical models. Most existing literature commonly assumes that degradation and failure of individual com-
ponents within a mechanical system are independent, which could lead to inaccurate diagnostic and prognostic
results. In this research, state-rate dependence denoting interaction between component health condition (de-
gradation state) and failure rate is proposed for degradation and failure analysis for a two-component repairable
system. A state discretization technique is proposed to model how health state of one component affects the
hazard rate of another. An extended proportional hazard model (PHM) is used to characterize the failure de-
pendence and estimate the influence of degradation state of one component on the hazard rate of another. An
optimization model is developed to determine the optimal hazard-based threshold for a two-component re-
pairable system. A case study on a generic industrial gearbox has been conducted to show the effectiveness of the
proposed model.

1. Introduction

Condition-based maintenance (CBM) has received serious attentions
in recent years because of improvement in sensor technology and cost
reduction in data collection. The majority of CBM research focuses on
single-component system. As manufacturing technology advances,
manufacturing system becomes more complex and the interrelations
among components become more complicated. CBM in complex system
becomes very challenging. In addition, the varieties and abundance of
the interrelations make CBM in complex system more intractable. As to
tackle the problem, the common way is to assume that component
degradations or failures are independent. However, this overlooks the
truth that stochastic dependence exists, e.g., Bian and Gebraeel [14]
and Sun et al. [25] address the genetic gear-box as a typical mechanical
system to present the existence of stochastic dependence. In their work,
it has been demonstrated that the degradation of a bearing can be re-
flected from its own vibration amplitude and the vibration can accel-
erate the degradation of the coupled shaft and other bearings. As a
result, the vibrations of the affected bearings increase and exacerbate
the degradations and failure rates of other bearings. As to simply deal
with failure or degradation dependence among components, re-

searchers assume that the dependence level is defined with prespecified
parameters or functions (Li et al. [8]; Hong et al. [9]; Zhang and Yang
[18]). Although stochastic dependence exists in multiple forms, extant
forms of stochastic dependence can be categorized into four types and
presented in Fig. 1. Dependence, such as hazard-hazard dependence
(Sun et al. [25]), state-rate dependence (Bian and Gebraeel [14], Ras-
mekomen and Parlikad [17]), degradation-hazard dependence (Caballé
et al. [3]) and shock-degradation dependence (Song et al. [24]) are
studied in different multi-component systems. One of the state-rate
dependences is state-hazard dependence, which is defined that the
degradation state of component influences the hazard rates of other
components. State-hazard dependence is rarely studied in CBM.

In this work, an investigation is carried out on how the component
states affect the hazard (failure) rate of other components (state-rate
dependence) and measuring the magnitude of state-hazard dependence.
We develop a method for discretizing component degradation states.
We proposed a method for measuring the influence of component state
on the hazard rate of other components. A replacement policy taking
into account component state information and maintenance cost is
developed.
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2. Background literature

Review works in CMB from different perspectives are presented by
researchers. Cho and Parlar [6] survey the literature on maintenance
and replacement models for multi-component system. A number of
models, such as repair model, group/opportunistic model, main-
tenance/replacement model, and inspection/maintenance model are
presented. Jardine et al. [1] review machinery diagnostics and prog-
nostics implementing CBM. The overview synthesizes the processes
from degradation data acquisition and data analysis until maintenance
decision-making. Techniques for dealing with different data forms, such
as time-domain data, frequency-domain data and value type data, are
mentioned. Alaswad and Xiang [22] present a panoramic view of CBM
for single-component system. Their review work focuses on inspection
performance, maintenance quality and maintenance optimization cri-
teria. The demand of CMB for multi-component system with stochastic
dependence has been emphasized.

2.1. CBM for single-component system

Numerous papers are published on CBM for single-component
system (Banjevic et al. [4]; Banjevic and Jardine [5]; Shafiee et al. [16];
Peng et al. [19]; Vlok et al. [20]; Makis and Jardine [27]; Zhu et al.
[28]). Banjevic et al. [4] propose a model known as control limit policy
for maintenance decision-making. An iteration algorithm and a re-
cursive procedure are developed in the proposed model as to obtain the
optimal preventive replacement threshold. Based on the control limit
policy, the research is further extended by Banjevic and Jardine [5] for
remaining useful life estimation. Peng et al. [19] present their research
on a single-component system suffering multiple dependent competing
failure processes. The studied failure processes are competing and
deemed as interdependent.

2.2. CBM for multi-component system

Because of the importance and demand of CBM for multi-compo-
nent system, an abundance of research investigating different forms of
dependence has been published. In contrast to stochastic dependence,
economic dependence is easy to manage and studied in plentiful re-
search (Bouvard et al. [12]; Tian and Liao [30]; Tian et al. [32]). CBM
in multi-component system with stochastic dependence is few due to
the variety and complexity of stochastic dependence. As to make the
maintenance modeling of multi-component system simple, Zhu et al.
[29] assume that the studied failure modes, hard failure and soft failure,
are independent. The maintenance performance with imperfect pre-
diction signal is investigated. In fact, the assumption, that degradation
processes of components in complex system are independent, is lack of
justification and always results in errors in estimating system reliability
or lifetime.

Golmakani and Moakedi [10] develop a model to find out optimal
inspection interval for a two-component repairable system with failure
interaction. Failures are classified into soft and hard, and hard failure
has influencing effect on soft failure and can not affected by soft failure.
Song et al. [24] propose a new reliability model for a series system
subject to competing hard and soft failure processes. Shocks can cause
hard failure and incremental progress on soft failure processes. Ras-
mekomen and Parlikad [17] propose a model with state-rate interac-
tions. They aim at identifying the optimal inspection timing and pre-
ventive replacement threshold for each tube under multiple
maintenance strategies. Zhang et al. [31] develop a mathematical
model by taking into account opportunistic maintenance and environ-
mental influence to determine an optimal maintenance policy for a
multi-component system. The environmental conditions are shown to
exert an influence on the component degradation processes. Caballé
et al. [3] propose a CBM strategy for the system subject to two de-
pendent causes of failure: degradation processes and sudden shocks.
The studied deterioration levels of the degradation processes directly
influence the sudden shock process and indirectly affect the intensity of
total failure of the system. In order to study how stochastic dependence
level influences maintenance strategy, copulas (Li et al. [8]; Hong et al.
[9]; Zhang and Yang [18]), such as Levy copula, Gumbel copula,
Clayton copula and normal copula, are proposed to model the magni-
tude of stochastic dependence. Stochastic dependence with different
magnitudes is investigated via the marginal distribution functions (Li
et al. [8]; Hong et al. [9]). A dependent latent age model for capturing
reliabilities of components with multiple competing failure modes and
failure interdependence is developed by Zhang and Yang [18]. A joint

Nomenclature

Δ inspection interval
β shape parameter of Weibull distribution
γ weight of covariate
η scale parameter of Weibull distribution
ґ(l)v point index in segment v for observation l
c(l)v number of failures in segment v for observation l
h(t, Z(t)) hazard rate given system age t and covariate vector Z

(t)= [Z1(t), Z2(t)]
kip the minimum positive integer number satisfying kip ≤ tip
n(l)v length of segment v for observation l
tip the time that the failure risk first reaches the threshold

given state vector Z(t)= [i, p]
CAC average cost per unit time
Ccycle total cost in association with repair and replacement per

cycle
Cm(k,i,p) expected repair cost due to failure given component age k

and covariates i and p

Cme cost of per minimal repair performed on component e
Cp total cost of replacing component 1 and 2
D, d condition-based threshold
N(D) number of failure repairs before replacement
P covariate state transition probability matrix
R(k,i,p,t−kΔ) conditional reliability function until time t given the

age of the system is kΔ and Z(kΔ)= [i,p]
Sc contrast function optimization stopping criteria
Tr replacement time;
U(V) contrast function;
V number of change-points
W(D) expected replacement time
W(k,i,p) expected replacement time given state vector Z(t)= [i, p]
ZFT physics-based threshold (fault threshold)
Z(t) value of the stochastic covariate at time t
Z(t) covariate vector Z(t)= [Z1(t), Z2(t)] contains state cov-

ariates of components 1 and 2 at time t
Σ|| ˆ || determinant of empirical covariance matrix Σ̂

Fig. 1. Type of stochastic dependence.
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