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a  b  s  t  r  a  c  t

The  surface  topography  of workpieces  has  an  important  influence  on the  final performances  of  the  prod-
uct. The  digital  filtering  is  a critical  step  to analyze  the  surface  topography  of  workpieces.  Bi-dimensional
empirical  mode  decomposition  (BEMD)  approach  is superior  to conventional  filtering  approaches  in the
analysis  of non-stationary  and non-linear  data.  High  definition  metrology  (HDM)  can  generate  mas-
sive  point  cloud  data  to  represent  the  three-dimensional  (3D)  surface  topography  of  workpieces,  which
provides a  new  opportunity  for surface  topography  analysis.  This  paper  develops  a  fast  and  adaptive
bi-dimensional  empirical  mode  decomposition  (FABEMD)  approach  for  filtering  of  workpiece  surfaces
using  HDM.  Firstly,  the  neighboring  window  algorithm  is presented  to extract  local  extrema  and  draw
the extrema  spectrum.  Secondly,  the adaptive  window  algorithm  is developed  to  automatically  select
the  optimal  window  size  of  the  order  statistics  filter,  and  plot  the envelope  spectrum.  Finally,  the  average
smoothing  filter  is presented  for smooth  filtering  and  generating  of  the  mean  envelope.  The  performance
of  the  proposed  FABEMD-based  filter is validated  by  a simulated  surface  data  and  three  real-world  sur-
face  data.  Compared  with  Gaussian  filter (ISO  11562:1996,  ASME  B46.1-2002),  the  BEMD-based  filter  and
the  recent  shearlet-based  filter  in the  qualitative  and  quantitative  analysis,  the  proposed  FABEMD-based
filter  is superior  for the  separation  and  extraction  of  different  surface  components.

©  2018  Published  by  Elsevier  Ltd on behalf  of The  Society  of  Manufacturing  Engineers.

1. Introduction

The surface texture is an important index to evaluate the quality
of workpieces [1,2], and is generally described from the small to the
large scale: roughness, waviness and form. It is well-known that
different components of the surface texture have different influ-
ences on the functional performance of workpieces. To be specific,
roughness is a good indicator of the surface irregularities, thus can
be applied to detect errors in the material removal process, and also
it has great influence on the workpiece functionality such as wear
and friction. Waviness, which may  occur from machine or work
deflections, chatter, residual stress, vibrations, or heat treatment,
has influence on tightness of workpieces. Form may  directly affect
the assembling performance of workpieces. Therefore, the motiva-
tion for separating these components derives from the fact that they
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have different origins and influences on workpieces functionalities
in different ways. It is very important to separate the surface texture
into different components before surface topography analysis.

Digital filtering is an essential step to realize the separation
process. Filtering of workpiece surfaces has been a hot research
topic on account of its importance for surface texture analysis.
The traditional filtering approaches such as 2RC filter and Gaus-
sian filter have been firstly studied, and the Gaussian filter is one of
the most widely-used standard filtering approaches. However, it is
well recognized that it is not robust against outliers. To overcome
the shortcoming, some modified approaches such as robust regres-
sion Gaussian filter [3], spline filter [4], robust spline filter [5], and
morphological filter [6] have been developed. Recent advances in
filtering approaches are reviewed in [7,8].

Several researchers develop wavelet-based filtering approaches
and apply them to analyze workpiece surfaces. Different from
the previous filtering approaches, wavelet-based filters can pro-
vide multi-scale analysis since they can divide a surface profile
into different frequency components and investigate each com-
ponent with a resolution matched to its scale. Fu et al. [9]
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adopted the wavelet transform to surface topography analysis
and compared different wavelet bases. Orthogonal wavelet bases
and biorthogonal wavelet bases were recommended due to their
transmission characteristics of the corresponding filters. Jiang
et al. [10] proposed a lifting wavelet representation for char-
acterization of surface topography. Josso et al. [11] proposed a
frequency normalized wavelet transform for surface roughness
analysis and characterization. Wang et al. [12] proposed a modi-
fied anisotropic diffusion filter to separate workpiece surfaces into
various scale-limited surfaces. Most recently, Du, Liu and Huang
[13] presented a shearlet-based filtering approach. The workpiece
surface was decomposed into different sub-bands of coefficients
with non-subsampled shearlet transform (NSST). Then the surface
components at different level were reconstructed based on inverse
NSST.

Recently, Huang et al. [14] and Du et al. [15] introduced and
improved the empirical mode decomposition (EMD) approach to
analyze one-dimensional non-stationary and non-linear signals
based on instantaneous frequency. Flandrin [16] proposed the con-
cept of filter banks based on EMD  and the corresponding order
intrinsic mode functions (IMFs) were combined to achieve the high-
pass, low-pass and band-pass filters. Wu  and Huang [17] confirmed
that the EMD approach had similar filtering characteristics with the
wavelet-based approaches. Boudraa and Cexus [18] used different
thresholds for each IMF  to reconstruct the new filter and realize the
signal denoising. Nevertheless, EMD  cannot be used to analyze 3D
data.

Nunes [19] proposed a bi-dimensional EMD  (BEMD) appraoch,
which is a two-dimensional (2D) extension of the EMD  approach,
mainly used for image processing [20], image denoising [21], image
edge pattern processing [22] and medical image registration [23],
not used for filtering of workpiece surfaces. Moreover, since the
window size of order statistic filters in the BEMD approach is not
determined adaptively, it frequently does not have the best filter-
ing results. Bhuiyan [24,25] proposed a fast and adaptive BEMD
(FABEMD) approach. Simulation results demonstrate that FABEMD
is not only faster and adaptive, but also outperforms the original
BEMD in terms of the quality of the BIMFs.

With the development of on-line high definition measurement
(HDM) technologies, great opportunities are provided for on-line
controlling surface quality. A representative of on-line HDM for sur-
face variation measurement is Shapix based on laser holographic
interferometry metrology [26], which measures 3D surface height
map and gains millions of data points within seconds, and has
150 �m resolution in x–y direction and 1 �m accuracy in z direc-
tion. Based on HDM, some researches about surface quality control
and engineering applications have been successfully conducted,
such as surface classification [27,28], tool wear monitoring [29],
form error evaluation and estimation [30,31], volume variation
control [32], and flat surface variation control [33]. However, to
the best knowledge of the authors, there is no BEMD-based filter-
ing approach for workpiece surfaces using HDM. The high density
point cloud data of HDM is large. About one million measurement
points are collected from a cylinder head by HDM system. So, HDM
needs a fast and adaptive analysis. Therefore, this paper presents a
novel fast and adaptive bi-dimensional empirical mode decompo-
sition (FABEMD) approach for filtering of workpiece surfaces using
HDM.

The remainder of this paper is organized as follows: The BEMD
approach is briefly introduced in Section 2. In Section 3, the pro-
posed approach of filtering workpiece surfaces is presented. In
Section 4, a simulation experiment is conducted to validate the
feasibility of the presented approach. In Section 5, three case stud-
ies using different kinds of workpiece surfaces are presented to

show the effectiveness of the proposed approach. In Section 6, the
conclusions of this study are drawn.

2. Brief introduction to BEMD

The BEMD approach decomposes a signal into its bi-dimensional
IMFs (BIMFs) and a residue based on the local spatial scales. Let
the original signal be denoted as I(x, y), a BIMF as F(x, y), and the
residue as R(x, y). The original bi-dimensional signal I(x, y) can be
decomposed by BEMD

I(x, y) =
∑

Fi(x, y) + R(x, y) (1)

where Fi(x, y) is the i-th BIMF obtained from its source signal Si(x,
y), and Si(x, y) = Si−1(x, y) − Ri−1(x, y).

It requires one iteration or more to obtain Fi(x, y), and the inter-
mediate state of a BIMF in j-th iteration can be denoted as FTj(x, y).
The decomposition steps of the BEMD approach are summarized as
follow:

Step 1: Set i = 1 and Si(x, y) = I(x, y).
Step 2: Set j = 1 and STj(x, y) = Si(x, y). STj represents the input

signal of the jth decomposition.
Step 3: Obtain the local maxima map  of FTj(x, y), denoted as Pj(x,

y).
Step 4: Interpolate the maxima points in Pi(x, y) and generate

the upper envelope, denoted as UEj(x, y).
Step 5: Obtain the local minima map  of FTj(x, y), denoted as Qj(x,

y).
Step 6: Interpolate the minima points in Qi(x, y)and generate the

lower envelope, denoted as LEj(x, y).
Step 7: Calculate the mean envelope MEj(x, y) = (UEj(x, y) + LEj(x,

y))/2.
Step 8: Calculate the details of the signal in the decomposition

process,FTj+1(x, y) = FTj(x, y) − MEj(x, y).
Step 9: Check whether FTj+1(x, y) follows the BIMF properties by

finding the standard deviation (SD), denoted as D (Eq. (2)), between
FTj+1(x, y)and FTj(x, y), and compare it with the desired threshold.

D =
M∑

x=1

N∑
j=1

|FT j+1(x, y) − FT j(x, y)|
|FT j(x, y)|2

2

(2)

where (x, y) is the coordinate, M is the total number of rows and
N is the total number of columns of the 2D data. The value of D is
usually chosen to be 0.5 to ensure that the mean value of BIMF is
close to 0.

Step 10: If FTj+1(x, y) meets the criteria according to step 9, then
Fj(x, y) = FTj+1(x, y), set Si+1(x, y) = Si(x, y) and i = i + 1, and go to step
11. Otherwise set j = j + 1, go to step 3 and continue up to step 10.

Step 11: Determine whether Si(x, y) has less than three extrema
points, and if so, the residual R(x, y) = Si(x, y), and the decomposition
is complete. Otherwise, go to step 2 and continue up to step 11.

In the process of extracting BIMFs, the number of extreme points
in Si+1(x, y) should be less than the number of extreme points in Si(x,
y). Let the BIMFs and the residual of a signal together be named
as bi-dimensional empirical mode components (BEMCs). All the
BEMCs compose the original 2D signal as follow

∑
F(x, y) =

K+1∑
i=1

Fi(x, y) = I(x, y) (3)

where Fi(x, y) is the i-th BEMC, and K is the total number of BEMCs
except the residual.
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