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a  b  s  t  r  a  c  t

Future  factories  will  feature  strong  integration  of  physical  machines  and  cyber-enabled  software,  work-
ing  seamlessly  to improve  manufacturing  production  efficiency.  In  these  digitally  enabled  and  network
connected  factories,  each  physical  machine  on the  shop  floor  can  have  its  ‘virtual  twin’  available  in
cyberspace.  This  ‘virtual  twin’ is  populated  with  data  streaming  in from  the physical  machines  to rep-
resent  a near  real-time  as-is  state  of the machine  in  cyberspace.  This  results  in  the  virtualization  of a
machine  resource  to external  factory  manufacturing  systems.  This  paper  describes  how  streaming  data
can be stored  in  a scalable  and  flexible  document  schema  based  database  such  as  MongoDB,  a  data  store
that makes  up  the  virtual  twin  system.  We  present  an  architecture,  which  allows  third-party  integration
of  software  apps  to  interface  with  the  virtual  manufacturing  machines.  We  evaluate  our  database  schema
against  query  statements  and  provide  examples  of how  third-party  apps  can  interface  with  manufacturing
machines  using  the  VMM  middleware.  Finally,  we  discuss  an  operating  system  architecture  for  VMMs
across  the  manufacturing  cyberspace,  which  necessitates  command  and  control  of  various  virtualized
manufacturing  machines,  opening  new  possibilities  in cyber-physical  systems  in  manufacturing.

© 2017  Published  by  Elsevier  Ltd on  behalf  of The Society  of  Manufacturing  Engineers.

1. Introduction

The variety and velocity of machine data on a factory floor
and cheaper methods to store, compute and analyze this data
for real-time technical and business decision making are major
driving forces to improve factory productivity. These develop-
ments are motivating the manufacturing information technology
industry to re-examine traditional machine control and network-
ing architectures present in manufacturing shop-floors. In discrete
manufacturing job shops, such as those in machining services,
networking multiple manufacturing machines can be difficult to
achieve due to a variety of reasons. This include, interoperabil-
ity concerns between machine controllers from various vendors,
outdated hardware controllers and a legacy infrastructure that is
incapable of handling latest network communication protocols.
This hinders the transformation of physical factory floors to the
digital era. Advancements made in machine communications stan-
dards (example – MT-CONNECT [1], OPC/UA [2], MQTT [3]) have
certainly lowered the barriers of machines communicating with
centralized information systems (such as MES  and ERP systems).
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The era of digitalization of manufacturing processes and its
networking for efficient utilization of manufacturing resources
requires a shift in the way data from manufacturing machines is
handled, stored, retrieved and computed for actionable insights.
Key manufacturing trends that are driving the need to rethink how
data from factory floors and its extended enterprise are organized,
include:

• The need for enterprises to quickly respond to evolving mar-
ket demands: Democratization of manufacturing is leading to
increasing demands for personalization or customization of prod-
ucts. Reconfiguration of physical infrastructure rapidly based on
changing market needs and demands is necessary. Production
in quantities of one, such as in personalized medical products,
to quantities less than one hundred will require new ways in
which data from manufacturing systems is ‘pulled’ to satisfy
market demands. This pull of information is necessary to assess
distributed capability and dynamic capacity across job-shop and
production floors regionally and globally.

• The shift to connecting product lifecycle data with the manufacturing
processes: The digital thread concept linking product information
throughout its lifecycle from conception to production, then use
and final disposable requires that we  have fundamentally new
ways in which information is linked across its various points of
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use [4]. Today, data generated during a product lifecycle is stored
in siloed information systems – from PDM/PLM, to ERP/MES, to
unique databases maintained by end customers. Integrating data
across these disparate systems and linking across them in mean-
ingful contexts across multiple enterprises in the supply chain
can be challenging and expensive to implement.

• Increasing granularity of data collected from manufacturing
machines: With the ubiquity of sensors (RFID and machine
mounted sensors), wireless networking and cloud storage, col-
lecting and storing large amounts of data is not a bottleneck.
Analytics conducted on manufacturing data can be beneficial
beyond just monitoring, but useful in predictive and prescrip-
tive maintenance [5]. It can also be used to inform key shop-floor
decisions such as production scheduling and supply chain per-
formance [6–8].

• The scrutiny placed on machine-to-machine connections in a net-
work: With all this connectivity, machine generated data requires
context and meaning. Semantic models must include both
explicit (raw signals, feature attributes) and implicit (operator
name, part name, description), compounded with a time-
reference to make sense of large machine generated data. The
consumer of this data is presented with customized visualization
and context to make data-driven decisions.

In a key technical position paper by Lee and Bagheri et al., the
authors proposed a high-level cyber-physical system (CPS) archi-
tecture towards digital factories [9]. The primary intended purpose
of CPS in factory floors is to manage Big Data from factory floors and
leverage the network connection ability of machines to create the
goal of resilient, intelligent and self-aware machines. Five tiered
elements are proposed in the CPS architecture – 1) Connection to
the physical machines; 2) Conversion of Data to Information for
each individual machine; 3) Aggregating this information across a
fleet of machines through ‘digital twins’ of machines; 4) Cognitive
architecture which help synthesize the information for decision
making both within and beyond an enterprise, and finally, 5) Con-
figuration, where data insights help decision making support by
individual machines themselves or by humans within the loop.
This paper relates to a system architecture and a flexible data stor-
age schema surrounding Levels 2 and 3, to enable higher order
elements of a manufacturing focused CPS. At these levels, we
focus on a data architecture that supports the concept of a ‘digital
twin’ for a machine or more specifically, ‘Virtualized Manufacturing
Machines’.

The virtual manufacturing machine (VMM)  of a physical
machine encapsulates its physical capabilities (static), in-process
data (dynamic) generated by controllers and any external sen-
sors attached to the machine. The core function of a VMM  is to
present a middleware architecture that abstracts hardware level
specifics of machines on the shop-floor and then provide a pro-
grammatic interface to allow higher order information systems to
feed into service applications. The community has seen a plethora
of technical phrases utilized to signify the data generated from
physical machines. These terms range from ‘digital twins’, ‘Cyber-
twins’, ‘digital machine analogs’, ‘digital machine shadows’ etc. At
its technical core, the concept of a virtualized version of the phys-
ical machine signifies a data model that encapsulates technical
specifications, machine data, and information relationship about
a physical machine and its environment which then represents the
machine in near real-time states within cyberspace.

The cyber-twin of a physical machine can reside within the
machine’s own computing system, at a server with close prox-
imity to the machine or at a remote external cloud location. It is
intended to tap in between the control/communications systems
of a machine and higher order execution systems. This stream-
ing data from a machine populates a data structure, which allows

it to be analyzed within the context of manufacturing. The VMM
for a machine must also provide its version of the data for cross-
analysis among various other types of machines on a factory floor.
We focus this study to the first part, a strategy to store structured
and unstructured data from machines and have that data be made
available to third-party applications.

This paper is organized as follows. In the following section,
we describe components of the proposed system architecture for
the virtualization of manufacturing machines. Further, we provide
details on the design of a document based database schema and
then critically evaluate the schema structure by testing it against
two query types on streaming machine data from a metal based
additive manufacturing machine. This paper will discuss the use of
an unstructured database (MongoDB) as the core backbone infras-
tructure that instantiates the virtual manufacturing machine. The
paper also proposes a high-level operating system architecture
when multiple VMMs  for the various manufacturing machines on a
shop-floor are operating in a cyber-physical manufacturing space.
We  demonstrate two  app cases for the VMM,  one each for a low
end, partially open sourced 3D printer and a high-end closed source
metal 3D printer.

2. Components of the virtual manufacturing machine
(VMM)

The ultimate goal of any cyber-physical manufacturing system
is the ability for global enterprises to quickly respond to business
and customer demands while containing costs and maintaining
operational flexibility. Wang et al. [10]. discusses various types of
cyber-physical systems in manufacturing. Their work expands on
the examples of CPS in manufacturing such as multi-agent systems
[11–13] adaptive manufacturing systems [14,15], model driven
manufacturing systems [16] and cloud manufacturing [17,18]. To
this end, there is an imminent need to consider advanced database
systems which allow large scale storage and retrieval needs for
cyber-physical systems.

In recent work, Kang et al. [19]. developed a NoSQL data store
using MongoDB system for supply chains in manufacturing and
performed an assessment of their traceability system with a sim-
ulation using streaming RFID data. Several papers have discussed
the feasibility of deploying NoSQL type data stores for storing large
volumes of streaming data from small sensors used in IoT appli-
cations [20–22]. In their studies, they have demonstrated various
aspects of NoSQL databases and analyzed their performance with
respect to relational databases. Boicea et al. [23] demonstrated the
performance of MongoDB vs relational databases where they com-
pared the performance of both the database systems in terms of
insertion, deletion and update speeds and recommended the use
of non-relational databases where high speeds are needed. Liu [24]
discussed the auto-sharding capabilities of MongoDB and devel-
oped strategies to improve the concurrent read/write performance
of the data structure. Several organizations have implemented
MongoDB as back-end IT systems for crunching through various
schema-less data and as a way  to store and present data in web
compatible formats [25]. Most recently, NIST has started a “Mate-
rials Genome initiative” which uses MongoDB at the backend with
RESTful services to enable third-party software integration [26,27].

NoSQL databases are a distinct class of databases that do not
have a prescribed schema when compared to conventional SQL
based databases. The most common of such flexible schema data
type stores include graph and document based stores. In docu-
ment based stores, data is stored in the form of key-value pairs
known as the JSON format (javascript object notation). The doc-
uments form the atomic units for a NoSQL database. This enables
the NoSQL databases to efficiently handle unstructured data gener-
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