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a  b  s  t  r  a  c  t

This paper  presents  a new  modelling  methodology  for compensation  of  the  thermal  errors  on  a gantry-
type  5-axis  CNC  machine  tool.  The  method  uses  a “Grey  Neural  Network  Model  with  Convolution  Integral”
(GNNMCI(1,  N)),  which  makes  full use  of the  similarities  and  complementarity  between  Grey system
models  and  artificial  neural  networks  (ANNs)  to overcome  the disadvantage  of  applying  either  model  in
isolation.  A  Particle  Swarm  Optimisation  (PSO)  algorithm  is also  employed  to optimise  the  proposed  Grey
neural  network.  The  size  of  the data  pairs  is  crucial  when  the  generation  of  data  is  a  costly  affair,  since
the  machine  downtime  necessary  to acquire  the data  is often  considered  prohibitive.  Under  such circum-
stances,  optimisation  of  the  number  of data  pairs  used  for training  is of  prime  concern  for  calibrating  a
physical  model  or training  a black-box  model.  A  Grey  Accumulated  Generating  Operation  (AGO),  which
is a basis  of  the  Grey  system  theory,  is used  to  transform  the  original  data  to a  monotonic  series  of  data,
which  has  less  randomness  than  the  original  series  of  data.  The  choice  of  inputs  to  the  thermal  model  is  a
non-trivial  decision  which  is ultimately  a compromise  between  the  ability  to  obtain  data  that  sufficiently
correlates  with  the thermal  distortion  and the  cost  of  implementation  of the  necessary  feedback  sensors.
In  this  study,  temperature  measurement  at key  locations  was  supplemented  by direct  distortion  mea-
surement  at  accessible  locations.  This  form  of  data  fusion  simplifies  the  modelling  process,  enhances  the
accuracy  of  the  system  and reduces  the  overall  number  of  inputs  to the model,  since  otherwise  a  much
larger  number  of thermal  sensors  would  be  required  to cover  the  entire  structure.  The  Z-axis  heating  test,
C-axis  heating  test,  and  the combined  (helical)  movement  are  considered  in  this  work.  The compensation
values,  calculated  by the  GNNMCI(1,  N)  model  were  sent  to the controller  for live  error  compensation.
Test  results  show  that  a 85%  reduction  in thermal  errors  was  achieved  after  compensation.

Crown  Copyright  © 2016  Published  by  Elsevier  Ltd on behalf  of  The  Society  of  Manufacturing
Engineers.  This  is  an open  access  article  under  the  CC  BY-NC-ND  license  (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

There is a focus of current research on high production rates
on small machine tools. However, large machine tools are of great
importance because of the significant demand for large high-
accuracy parts, such as impellers, engine blocks, aeroplane sections,
aerofoils, etc. The accuracy of a gantry-type 5-axis machine tool
capable of manufacturing large parts is usually not as high as that of
small, three-axis machine tools because there are a greater number
of error sources, which are amplified by bigger volumes and longer
axis strokes. High accuracy for smaller machines is often achievable
by improved design or other “error avoidance” strategies. How-
ever, the same reductions in error are not always technically or
commercially viable for larger machines.
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Thermal errors can have particularly significant effects on the
accuracy of large machines. They come from thermal deformations
of the machine elements caused by heat sources that exist within
the structure (i.e. ball screws, bearings, axis drive motors, friction
on the way surfaces, and the flows of coolant) and the ambient
temperature changes. Those thermal errors have been reported
to be approximately 70% of the total positioning error of the CNC
machine tool [1], this differs from machine-to-machine. Although
thermal errors might be reduced by making the machine from a
material that has a low coefficient of thermal expansion, an error
compensation system is often considered to be a more economical
method of decreasing thermal errors. Compensation is a process
where the thermal error present at a particular time is corrected
by adjusting the position of a machine’s axes by an amount equal
to the error at that position. An extensive study has been carried
out in the area of thermal error compensation. Researchers have
employed various techniques such as a finite-element method [2]
and finite-difference method [3] in modelling the thermal char-
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acteristics. However, building a numerical model can be a great
challenge due to problems of establishing the boundary conditions
and accurately obtaining the characteristic of heat transfer. There-
fore, testing of the machine tool is still required to calibrate the
model for successful application of the technique.

In contrast, other techniques use empirical modelling, where the
model is based on the experimental measurements of the machine
tool, rather than calibrating an existing model. Different model
structures have been used to predict thermal errors in machine
tools such as multiple regression analysis [4], types of artificial neu-
ral networks [5], fuzzy logic [6], an adaptive neuro-fuzzy inference
system [7,8], Grey system theory [9] and a combination of several
different modelling methods [10,11].

Early work by Chen et al. [4] used both a multiple regression
analysis (MRA) model and an artificial neural network (ANN) model
for thermal error compensation of a horizontal machining cen-
tre. To build their models, 810 data sets were collected from five
different tests; each test was run for 6 h for a heating cycle and
then stopped for 10 h for a cooling down cycle. With their experi-
mental results, the thermal error was reduced from 196 to 8 mm.
Wang [10] used a Hierarchy-Genetic-Algorithm (HGA) trained neu-
ral network in order to map  the temperature change against the
thermal response of the machine tool. Wang [8] also proposed a
thermal model by using an Adaptive Neuro Fuzzy Inference Sys-
tem (ANFIS) and optimised the number of sensors by Grey system
model GM(1,m). A hybrid learning method, which is a combination
of both steepest descent and the least-squares estimator methods,
was used in the learning algorithms. Experimental results indicated
that the thermal error compensation model could reduce the ther-
mal  error to less than 9 �m under real cutting conditions. Wang in
Refs. [10,8] used 150 min  and 480 min  of data acquisition in order
to build HGA and ANFIS models, respectively. However, both mod-
els require training cycles to calibrate the model how to respond
to various changes in input conditions. Eskandari et al. [12] pre-
sented a method by which to compensate for positional, geometric,
and thermally induced errors of three-axis CNC milling machine
using an offline technique. Thermal errors are modelled by three
empirical models: MRA, ANN, and ANFIS. To build their models, the
experimental data were collected every 10 min  while the machine
was running for 120 min. The experimental data are divided into
training and checking data sets. Their validated results on a free
form, show significant average improvement of 41% of the errors.
Abdulshahed et al. [13] proposed a thermal model by using an
ANFIS with fuzzy c-means clustering. Different groups of key tem-
perature points were identified from thermal images using a novel
schema based on a GM (0, N) model and Fuzzy c-means clustering.
Experimental results indicated that the thermal error compensa-
tion model could reduce the thermal error to less than 2 �m. Also,
similar works have been carried out by the same authors in Refs.
[11,14,15].

Wang et al. [9] proposed a systematic methodology for the ther-
mal  error compensation of a machine tool. The thermal response
was modelled using a Grey model based on Grey system the-
ory to predict the thermal errors with only 30 min  of measured
data. Unfortunately, their model lacks the ability of self-learning,
self-adaption, self-organisation, and consideration of feedback cor-
rection. Therefore, their model obtained under one particular
operating condition is not robust under other operation conditions.
Gomez-Acedo et al. [16] proposed a parametric state space model
for the compensation of thermal distortions in large machine tools.
Only two-temperature sensors and spindle speed were used as
model inputs. A small number of thermal sensors, however, might
lead to poor prediction accuracy.

Whilst empirical models can be good at predicting thermal
errors, they require a large amount of data with different working
conditions to determine the governing laws of the system. How-

ever, a realistic governing law may not exist even when a large
amount of data has been measured. Furthermore, the process of
obtaining such data can take several hours for internal heating tests
and several days or more for the environmental test.

The growing complexity of manufacturing systems drives
research to develop techniques to imitate the underlying function-
ality of the system. In the past, the model had to be kept as simple
as possible. For instance, although the ANN models are more accu-
rate than the regression models, the calibration of the regression
model coefficients is simpler (least squares approach). Neverthe-
less, there is still a strong argument for simplicity, where possible,
to avoid over-constraining the system and introducing instability.
Extensive research has also explored a number of metamodels, e.g.
polynomial models, radial basis function (RBF), and ANN models.
Metamodeling involves (i) choosing an experimental design, (ii)
choosing a model, and then (iii) training/calibrating the model to
the experimental data [17]. There are several options for each of
these steps as illustrated in Ref. [17]. Hussain et al. [18] have used
a metamodeling technique based on radial basis functions, which
explored using factorial and Latin hypercube designs. The resulting
metamodel was tested on seven different data sets, obtained from
known input-output relationships. Simulation results indicate that
the factorial designs generally provided better fit compared with
Latin hypercube designs for metamodels using RBF, except in some
instances near the centre of design space.

Properly designed experiments should be used to obtain an
accurate model. The number of samples can vary greatly depending
on the complexity of the system under consideration [19]. How-
ever, many other statistical models have been trained successfully
with small amounts of training data [20,21,19]. Buragohain and
Mahanta [19] have proposed an ANFIS based modelling method
where the number of data samples employed for training was
minimised by application of an engineering statistical technique
called full factorial design. Furthermore in Refs. [20,21] they have
applied another method called V-Fold technique. Although, their
techniques were able to construct a model with a small number of
training samples (as few as 7), they still used all the experimental
samples in order to select the optimal ones. Data transformation
can also change the smoothness and comparability of the data.
For instance, Huang and Chu [22] have proposed a data transfor-
mation technique to simplify the fuzzy modelling procedures. The
transformation method allows the whole raw data to be mapped
to another domain such that there is no need to adjust the mem-
bership functions, and the fuzzification process is simply taking
place on the fixed ones. Shmilovici and Aguilar-Martin [23] have
also utilised Box-Cox transform to improve the quality of the fuzzy
model, before parameter optimisation occurs. Therefore, optimisa-
tion in the number of training patterns and data domain used for
training are of prime concern in the field of modelling.

To supplement the proposed model, we use the AGO to increase
the linear characteristics and reduce the randomness from the mea-
suring samples. This simple but effective technique allows us to
build the thermal model under the condition of small training data.
In short, the proposed model incorporates the AGO method into the
modelling process to improve its prediction accuracy and robust-
ness with minimal efforts.

The hysteresis effect is defined as a system that has memory,
where the effects of the current input to the system are experi-
enced with a certain delay in time [24]. Due to varying thermal time
constant, thermal effects on CNC machine tools have the charac-
teristic of memorising the previous thermal status. Therefore, the
errors in a machine tool are not only dependent on the current
thermal status measured at the surface, but also influenced by the
previous conditions of the machine. The hysteresis behaviour will
introduce error in each cycle, which in a worst case scenario can be
seen in large machine tools with bigger volumes, longer strokes and
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