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a b s t r a c t

In this paper, a composite model for earthquake rupture initiation and propagation is proposed. The
model includes aspects of damage mechanics, fiber-bundle models, and slider-block models. An array
of elements is introduced in analogy to the fibers of a fiber bundle. Time to failure for each element is
specified from a Poisson distribution. The hazard rate is assumed to have a power-law dependence on
stress. When an element fails it is removed, the stress on a failed element is redistributed uniformly to
a specified number of neighboring elements in a given range of interaction. Damage is defined to be
the fraction of elements that have failed. Time to failure and modes of rupture propagation are deter-
mined as a function of the hazard-rate exponent and the range of interaction.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A composite model is introduced in this paper for the nucle-
ation and propagation of fractures. The model incorporates aspects
of damage mechanics, fiber-bundle models, and slider-block mod-
els. A square array of elements is considered, these elements are
analogous to the fibers in a fiber-bundle model and the blocks in
a slider-block model. At time t = 0 a constant force is applied to
the system. Time-to-failure statistics are prescribed. When an ele-
ment fails the stress on that element is transferred to a prescribed
range of adjacent elements. Numerical simulations are used to
study the conditions under which a well defined rupture nucleates
and to illustrate the propagation of this fracture over the array.

The model is closely related to the fiber-bundle model. The fiber
bundle initially consists of n0 fibers. Subsequently nf fibers fail and
when nf = n0 the bundle fails. When a fiber fails the load on that fi-
ber is transferred to other fibers. In the equal-load sharing case the
load is transferred to all other fibers equally. In the local load shar-
ing case the load is transferred to the adjacent fibers within a pre-
scribed interaction region. Two failure criteria have been proposed.
The first is static and a failure strength is prescribed statistically for
each fiber [1]. As the stress on the fibers increase, more fibers fail.

The second failure criterion specifies a statistical time to failure for
each fiber that is stress dependent [2,3]. In terms of applicability
the latter approach is now generally accepted. A general review
of fiber-bundle models has been given in [4].

Damage mechanics is an empirical continuum approach to
material failure [5,6]. A continuum damage variable a is defined
by the relation

E ¼ E0ð1� aÞ ð1Þ

where E is the Young’s modulus for the damaged material and E0 is
the Young’s modulus for the undamaged material. When a = 1 fail-
ure occurs. A rate equation for the increase in damage is specified.
There is a close association between the equal-load sharing fiber-
bundle model and damage mechanics if it is assumed that [7]

a ¼ nf

n0
ð2Þ

Damage mechanics does not consider the propagation of a rupture.
Slider-block models have been studied extensively as models

for earthquakes [8–12]. An array of slider blocks is pulled along a
surface with puller springs. When the stress on a block exceeds
the static coefficient of friction it slips and stress is transferred to
other blocks by connector springs. Extensive studies of the role
of stress transfer have been carried out [13]. When a block fails
the stress on the block is redistributed equally to neighboring
blocks in a given range of interaction. This approach has been used
to study a slider-block model in a failure mode [14]. However, no
time to failure statistics were incorporated.
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2. The model

An illustration of the model is given in Fig. 1. A square grid of
elements is considered with L elements on a side, for the case illus-
trated L = 17 so that the total number of elements is n0 = 172 = 289.
At time t = 0 a constant load F0 is applied to the grid and it is uni-
formly distributed so that each element has a stress

r0 ¼
F0

n0
ð3Þ

No additional external forces are applied to the system. A time to
failure tf is assigned randomly to each element from a prescribed
distribution. In this paper, it is assumed that this distribution is
Poisson so that there is no memory of the stress history of an ele-
ment. The cumulative history of failure times is thus given by

Pcðtf Þ ¼ 1� e�mtf ð4Þ

where m is the hazard rate. This distribution has been shown to be
applicable to the distribution of nucleation times in solid-state
physics, specifically the Ising model [15]. A second assumption is
that the hazard rate m(r) has a power-law dependence on the stress
r on the element

mðrÞ ¼ m0
r
r0

� �q

ð5Þ

where the power-law exponent q must be specified and m0 is the va-
lue of the hazard rate when r = r0. It is found experimentally that
values of q are in the range 2–5 for various fibrous materials [16].

Initially, at t = 0, the stresses on all elements are equal with
the value r0 given in Eq. (3). For each element a random number
Pc in the range 0–1 is chosen. Using this random number the
corresponding failure time of the element is obtained from Eq.
(4) with m = m0

tf ¼
1
m0

ln½ð1� PcÞ�1� ð6Þ

The first element fails at t = tf,min the smallest of these failure times.
This first failed element is illustrated in Fig. 1. The failed element is
removed from the grid (there is no healing). The stress on the failed

element is redistributed equally to all surviving elements in a range
of interaction r. For the example illustrated in Fig. 1 the range of
interaction is r = 2. The redistribution is carried out over a square
region with 2r + 1 elements on a side. The maximum number of ele-
ments nrd over which the stress is redistributed is

nrd ¼ ð2r þ 1Þ2 � 1 ð7Þ

For the example in Fig. 1, nrd = 24. In subsequent redistributions
some of the elements in the region may have been removed due
to previous failures. In this case the stress is redistributed equally
to the surviving elements. If the failed element has no surviving
neighbors, the stress on that element is dissipated from the system,
reducing the total load.

All surviving elements in the grid are given a new time to failure
Dtf that is determined from Eqs. (4) and (5) written in the form

Dtf ¼
1
m0

r0

r

� �q
ln½ð1� PcÞ�1� ð8Þ

where Pc is a new random number in the range 0–1. This approach
is appropriate for the Poisson distribution of failures given by Eq. (4)
since a surviving element has no memory of the prior stress history.
Considering the values Dtf for all elements, the shortest time to fail-
ure is determined. At this time this failed element is removed from
the grid. This process is continued until all elements have failed.
This is the failure time tgf for the grid. At this time the number of
failed elements nf is equal to the number of elements originally
on the grid n0, nf = n0. Following the standard association of damage
mechanics with the fiber-bundle model we take the damage vari-
able a to be given by Eq. (2). The damage variable is the fraction
of failed elements, failure of the grid occurs at a = 1. A primary ob-
ject of our simulations is to determine a as a function of t
(0 6 t 6 tgf).

3. Mean-field analysis

The case in which the stress on a failed element is redistributed
equally to the surviving elements on the grid can be solved analyt-
ically. This is known as equal-load sharing and is the mean-field
limit for this problem. For this case the stresses on all surviving ele-
ments rmf(t) are equal. The condition that the total force F0 on the
grid remains constant for t > 0 requires

ðn0 � nf Þrmf ¼ n0r0 ð9Þ

The standard breakdown rule for the rate of failure of fibers given in
[2–4] is

dðn0 � nf Þ
dt

¼ �mðrÞðn0 � nf Þ ð10Þ

where m is again the hazard rate. If m is a constant m0 the integration
of Eq. (10) gives the probability distribution given in Eq. (4). It is
important to note that there is a correspondence between the fi-
ber-bundle formulation and the damage formulation only if the
Poissonian failure condition in Eq. (4) is used.

The power-law dependence of the hazard rate on stress as given
in Eq. (5) is assumed to be valid. Combining Eqs. (5) and (9) gives

mðnf Þ ¼ m0 1� nf

n0

� ��q

ð11Þ

and substitution into Eq. (10) gives

dðn0 � nf Þ
dt

¼ �m0nq
0

ðn0 � nf Þq�1 ð12Þ

Integrating with nf = 0 at t = 0 with the definition of the damage var-
iable a given in Eq. (2) gives

Fig. 1. Illustration of the model. A square grid of elements with width L is
considered, in this case L = 17 so that there are n0 = 172 = 289 elements. At time t = 0
a uniform load F0 is uniformly distributed to all the elements. The stress r0 on each
element is r0 = F0/n0. One element has the shortest time to failure tf,min, the failure
of this element is the solid square. The stress from this failed element is
redistributed equally to all the elements within range r. Here r = 2 and is
represented by the black line surrounding the failed element. The stress is
redistributed equally to the 24 remaining elements within the square.
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