Available online at www.sciencedirect.com

Mechanism

ScienceDirect and
Machine Theory

e iiGes
ELSEVIER Mechanism and Machine Theory 44 (2009) 272-288

www.elsevier.com/locate/mechmt

Free vibrations analysis of a rotating shaft with nonlinearities
in curvature and inertia

S.A.A. Hosseini, S.E. Khadem *

Department of Mechanical Engineering, Tarbiat Modarres University, P.O. Box 14115-177, Tehran, Iran

Received 23 April 2007; received in revised form 4 December 2007; accepted 21 January 2008
Available online 14 March 2008

Abstract

In this paper the free vibrations of an in-extensional simply supported rotating shaft with nonlinear curvature and iner-
tia are considered. Rotary inertia and gyroscopic effects are included, but shear deformation is neglected. To analyze the
free vibrations of the shaft, the method of multiple scales is used. This method is applied to the discretized equations, and
directly to the partial differential equations of motion, which demonstrates the same results. An expression is derived which
describes the nonlinear free vibrations of the rotating shaft in two transverse planes. It is found that in this case, both for-
ward and backward nonlinear natural frequencies are being excited. The results of perturbation method are validated with
numerical simulations.
© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Rotating shafts are used for power transmission in many modern machines. Accurate prediction of dynam-
ics of rotating shafts is necessary for a successful design. Free vibrations analysis is one of the important steps
in rotor-dynamics. Grybos [1] considered the effect of shear deformation and rotary inertia of a rotor on its
critical speeds. Choi et al. [2] presented the consistent derivation of a set of governing differential equations
describing the flexural and the torsional vibrations of a rotating shaft where a constant compressive axial load
was acted on it. Jei and Leh [3] investigated the whirl speeds and mode shapes of a uniform asymmetrical Ray-
leigh shaft with asymmetrical rigid disks and isotropic bearings. Free damped flexural vibrations analysis of
composite cylindrical tubes was carried out by Singh and Gupta [4], where they used beam and shell theories.
Sturla and Argento [5] studied the free and forced response of a viscoelastic spinning Rayleigh shaft. Melanson
and Zu [6] studied the free vibrations and stability of internally damped rotating shafts with general boundary
conditions. Kim et al. [7] studied the free vibrations of a rotating tapered composite Timoshenko shaft.
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Karunendiran and Zu [8] analyzed free vibrations analysis of a shaft on resilient bearings. Free and forced
vibrations analysis of a rotating disk-shaft system with linear elastic bearings was investigated by Shabaneh
and Zu [9]. Bearings were mounted on viscoelastic suspensions. EI-Mahdy and Gadelrab [10] studied the free
vibrations of unidirectional fiber reinforcement composite rotor. Raffa and Vatta [11] derived the equations of
motion for an asymmetric Timoshenko shaft with unequal principal moments of inertia. The critical speeds
and mode shapes of a spinning Rayleigh beam with six general boundary conditions are investigated analyt-
ically by Sheu and Yang [12]. Gubran and Gupta [13] studied the effect of stacking sequence and coupling
mechanisms on the natural frequencies of composite shafts.

To simplify the analysis, researchers often try to use the linear analysis. But, application of nonlinear anal-
ysis is sometimes inevitable. Many phenomena should be described with nonlinear equations which are not
explainable with linear analysis. Using the Hopf bifurcation theory, Kurnik [14] analyzed self-excited vibra-
tions of a rotating geometrically nonlinear shaft caused by internal friction. Shaw and Shaw [15] analyzed sta-
bility and bifurcations of a rotating shaft made of a viscoelastic material. Using the general theory of bar
bending, Leinonen [16] presented a nonlinear model to describe the bending behavior of a rotating shaft. Kur-
nik [17] analyzed the stability and self-excited postcritical whirling of a rotating shaft with the aid of bifurca-
tion theory. The shaft was made of a material with elastic and viscous nonlinearities. Vibrations of a spinning
rotor with nonlinear elastic and geometric properties were considered by Cveticanin [18]. The method of mul-
tiple scales was applied to analyze the free and forced vibration of nonlinear rotor-bearing systems by Ji and
Zu [19]. They used a nonlinear spring and linear damping to model the nonlinear bearing pedestal. A geomet-
rically nonlinear model of a rotating shaft was introduced by Luczko [20]. The model included Von-Karman
nonlinearity, nonlinear curvature effects, large displacements and rotations as well as gyroscopic and shear
effects. Viana Serra Villa et al. [21] used the invariant manifold approach to explore the dynamics of a non-
linear rotor. They constructed a reduced order model with the aid of nonlinear normal modes and evaluated
its performance. Cveticanin [22] considered the free vibrations of a Jeffcott rotor with cubic nonlinear elastic
property. He applied the Krylov—Bogolubov method to solve the nonlinear equations of motion. Lately, pres-
ent authors studied free vibrations of a rotating beam with random properties [23], and vibrations and reli-
ability of a rotating beam with random properties under random excitations [24]. To study uncertainty,
stochastic finite element method based on the second order perturbation method was applied.

In this paper, the equations of motion of a continuous simply supported rotating shaft with nonlinear cur-
vature and inertia are derived. Rotary inertia and gyroscopic effects are included but, shear deformation is
neglected. Using the in-extensionality assumption, the equations of motion are derived with the aid of Ham-
ilton principal. To solve theses gyroscopic nonlinear equations of motion approximately, the multiple scales
method is used. This method is applied directly to the partial differential equation of motion and to the dis-
cretized equations. Some researches have shown that applying the multiple scales method to the discretized
equations might produce quantitative and qualitative errors (for example, [25]). The systems that they consid-
ered were nongyroscopic. Here, it is shown that in our gyroscopic system, resulting reduced equations from
two approaches are the same. An expression is derived which describes the nonlinear free vibration of the
rotating shaft in two transverse planes. Some authors have used only forward whirling frequency to study
the nonlinear free vibrations of a rotating shaft with gyroscopic effects (for example, [19]). Here, it is shown
that in the nonlinear free vibrations of a rotating shaft with gyroscopic effects, both forward and backward
nonlinear natural frequencies are excited. So, if one takes into account only the forward natural frequencies,
the results become incorrect. Effects of rotary inertia, external damping coefficient and rotating speed on the
nonlinear amplitude and natural frequencies of first two modes of a shaft are examined. The results of pertur-
bation method are validated with numerical simulations.

2. Equations of motion

The schematic of a continuous rotating shaft has been shown in Fig. 1. The length of the undeformed shaft
center line is /. Displacements of any particle of the shaft are described in inertial frame X-Y-Z. The x—y—z
constitute a local coordinate which are principal axes of the beam cross section. The axes are attached to
the center line of the deformed shaft (Fig. 1) at position x. Displacements of a particle in arbitrary location
x along X-, Y- and Z-axes are u(x,?), v(x, ) and w(x,?), respectively, and torsional angle is ¢(x, ). Following



Download English Version:

https://daneshyari.com/en/article/805039

Download Persian Version:

https://daneshyari.com/article/805039

Daneshyari.com


https://daneshyari.com/en/article/805039
https://daneshyari.com/article/805039
https://daneshyari.com/

