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a  b  s  t  r  a  c  t

We  propose  a Lagrangian  fluid  formulation  particularly  suitable  for fluid–structure  interaction  (FSI)
simulation  involving  free-surface  flows  and  light-weight  structures.  The  technique  combines  the fea-
tures  of  fractional  step  and  quasi-incompressible  approaches.  The  fractional  momentum  equation  is
modified  so  as to include  an  approximation  for the  current-step  pressure  using  the  assumption  of
quasi-incompressibility.  The  volumetric  term  in  the  tangent  matrix  is  approximated  allowing  for  the
element-wise  pressure  condensation  in  the  prediction  step.  The  modified  fractional  momentum  equa-
tion can  be  readily  coupled  with  a structural  code  in  a partitioned  or monolithic  fashion.  The  use  of  the
quasi-incompressible  prediction  ensures  convergent  fluid–structure  solution  even for  challenging  cases
when  the  densities  of the  fluid  and  the  structure  are  similar.  Once  the prediction  was  obtained,  the  pres-
sure  Poisson  equation  and  momentum  correction  equation  are  solved  leading  to  a truly  incompressible
solution  in the  fluid  domain  except  for the  boundary  where  essential  pressure  boundary  condition  is
prescribed.  The  paper  concludes  with  two  benchmark  cases,  highlighting  the  advantages  of  the  method
and comparing  it with similar  approaches  proposed  formerly.
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1. Introduction

Fluid–structure interaction (FSI) problems involving incom-
pressible fluid flows and flexible structures are found in many civil
and mechanical engineering applications. Active research has been
carried out in the field of FSI over past two decades and multiple
numerical models were developed (a review can be found, e.g. in
[1]). For the problems involving light-weight structures interacting
with free-surface flows quasi-incompressible Lagrangian fluid for-
mulations coupled to the standard structural formulations proved
to be very advantageous. The evolution of the free-surfaces and
FSI interfaces could be tracked since it was naturally defined by
the position of the moving Lagrangian mesh. On the other hand,
quasi-incompressible formulations circumvent the added mass
effect [2] typically encountered when standard truly incompress-
ible fluid formulations were used [3]. This benefit was achieved due
to the relaxation of the incompressibility constraint introduced
by the assumption of slight compressibility. Quasi-incompressible
fluid formulations have been widely used for FSI simulation both
in the finite element method (FEM) [4–7] and the smooth particle
hydrodynamics (SPH) contexts [8–11].
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For designing monolithic FSI solvers (i.e. the ones that rely
on the solution of the coupled problem using a single discrete
system) quasi-incompressible formulations are particularly ben-
efitial as they allow for pressure condensation in the fluid domain
while maintaining the velocity/pressure coupling. This results in (a)
better monolithic system conditioning due to elimination of the dif-
ferent variables scales (b) simplicity of coupling with the structure
when both sub-domains are described using the same primary vari-
able (displacement or velocity). In such case elements of the fluid
and the structure simply share the same degrees of freedom at a
contact node. Thus, a fluid–structure problem can be solved very
similarly to a single-material one. Of course, in such approaches the
use of fitting interface meshes is obligatory.

Under the assumption of quasi-incompressibility the pressure
is related to the kinematic field (velocity or displacement) via
a constitutive equation involving the compressibility constant,
also called the bulk modulus. For high values of the bulk mod-
ulus quasi-incompressible formulations provide an acceptable
approximation of the incompressible behavior. The bulk modulus
must be sufficiently high to conserve mass in a satisfactory way
and introduce the sound propagation speed at least 1 order of
magnitude higher than the expected velocity of the bulk flow. For
FSI problems the one can update the fluid pressure in the coupling
step using the constitutive relation ensuring that the pressure

http://dx.doi.org/10.1016/j.rimni.2015.09.002
0213-1315/© 2015 CIMNE (Universitat Politècnica de Catalunya). Published by Elsevier España, S.L.U. All rights reserved.

dx.doi.org/10.1016/j.rimni.2015.09.002
dx.doi.org/10.1016/j.rimni.2015.09.002
www.elsevier.es/rimni
mailto:pryzhakov@cimne.upc.edu
http://www.cimne.com
dx.doi.org/10.1016/j.rimni.2015.09.002


Please cite this article in press as: P. Ryzhakov, A modified fractional step method for fluid–structure interaction problems, Rev. int.
métodos numér. cálc. diseño ing. 2016. http://dx.doi.org/10.1016/j.rimni.2015.09.002

ARTICLE IN PRESSG Model
RIMNI-166; No. of Pages 7

2 P. Ryzhakov / Rev. int. métodos numér. cálc. diseño ing. 2016;xxx(xx):xxx–xxx

accounts for the motion of the structure. As we shall see further,
this pressure update does not involve linear system solution and
is therefore computationally cheap.

Quasi-incompressible fluid formulation based on linear
velocity-constant pressure finite elements was proposed in [4].
Element-wise constant pressure formulation facilitated pressure
condensation at an elemental level, i.e. prior to assembly. This
facilitated solving the entire fluid–solid problem using a unified
approach with the velocity being the only primary variable.
However, the drawback of the formulation was the volumetric
locking phenomenon (well-known in constant-pressure elements)
that manifested already at moderately high values of the bulk
modulus. On the other hand, low values of bulk modulus led to
poor approximations of the incompressible behavior. In [6,12]
an alternative based on linear pressure interpolations was pro-
posed. The formulation exhibited superior behavior in terms of
volumetric locking. Nonetheless, the computational cost of the
solver increased due to the impossibility of condensing pressure
elementally when using linear pressure approximation. The
global pressure condensation procedure had to be introduced.
Moreover, when approaching incompressibility limit the pressure
instability problems (inf-sup instability [13]) due to using equal
order velocity-pressure interpolations manifested. In general, the
ambiguity of the quasi-incompressible or penalty approaches can
be expressed as follows: the compressibility constant must be large
enough to approximate the incompressibility accurately, but at the
same time it must be small enough not to lead to “stiff” governing
systems. An improvement with respect to modeling the incom-
pressible behavior can be found in [14], where an idea of combining
the above-mentioned quasi-incompressible approaches with the
fractional step strategy was proposed. The method consisted in
using the momentum equation of a quasi-incompressible fluid
as a prediction (fractional momentum equation). The subsequent
solution of the pressure Poisson’s equation and the momentum
equation correction led to the truly incompressible solution. The
method allowed for using relatively low values of bulk modulus
in the quasi-incompressible momentum equation, since the truly
incompressible solution was recovered at the correction step.
The necessity of the computationally expensive global pressure
condensation inherited from [6] due to the use of linear pressure
interpolations defined the main drawback of the methodology.

In the present work we propose one further improvement of the
methods’ family developed in [4,6,14]. Following the idea of com-
bining the quasi-incompressible prediction with the fractional step
method, we propose to use the approximation of the volumetric
term in the tangent matrix that allows for computationally efficient
elemental pressure condensation, defining a major advantage in
comparison with [14]. We  also introduce the fluid–structure inter-
action coupling strategy where the modified fractional momentum
equation is solved together with the momentum equation of the
structure monolithically, while the subsequent “incompressible
correction” steps are carried out in the fluid domain exclusively.

The paper is organized as follows. We  first introduce
the modified fractional momentum equation using the quasi-
incompressibility assumption. An approximate linearization of the
volumetric term is introduced. Correction steps ensuring truly
incompressible solution are specified next. Then the solution pro-
cedure for the FSI problems is outlined. The paper concludes with
two challenging FSI benchmark examples.

2. Numerical model

2.1. Governing equations for the fluid

Let us consider a fluid domain � with the fixed boundary �d.
We shall consider viscous incompressible Newtonian fluids being

the most common in the majority of the engineering applications.
The governing system are therefore the Navier–Stokes equa-
tions equipped with the incompressibility condition. These can be
written as:

�
∂v
∂t

+ ∇p + �v · ∇v − �∇ · (2�(v)) = �g (1)

∇ · v = 0 (2)

where v is the velocity vector, p the pressure, t the time, g the body
force, � the density, � the dynamic viscosity and � = (∇ v + ∇ Tv)/2
– the deviatoric strain rate.

At the fixed wall �d, homogeneous Dirichlet boundary condi-
tions are prescribed:

v = 0 at �d (3)

2.1.1. Finite element formulation
The equal order linear velocity/pressure interpolations over

3-noded triangles (2D) or 4-noded tetrahedra (3D) are used here
for the space discretization of the governing equations Eqs. (1) and
(2). We  assume Backward Euler time integration scheme exclu-
sively for the sake of simplicity. All the arguments presented in
the paper are valid for any implicit time integration scheme.
In the implementation carried out in this work the second order
Newmark–Bossak scheme is used [6]. Being standard, the space and
time discretization are not discussed here (see e.g. [15,16]). Pres-
sure stabilization term is added due to the use of the equal order
velocity-pressure formulation (Algebraic Sub-Grid Scales (ASGS)
stabilization [17] is implemented here). Lagrangian description of
the fluid is considered.

Given vn and pn at tn, the time discrete problem consists in
finding vn+1 and pn+1 at tn+1 as the solution of

M
vn+1 − vn

�t
+ �Lvn+1 + Gpn+1 = F (4)

Dvn+1 + Spn+1 = 0 (5)

where M,  L, G and S are the mass, the Laplacian, the gradient and
the stabilization matrices, respectively. v and p are the velocity and
pressure, respectively, and F is the body force vector. Subindices
indicate the time step. Note the absence of the convective term
due to the use of the Lagrangian kinematic framework.

The matrices and vectors are assembled from the elemental con-
tributions defined as

M = �

∫
�e

NNT d� (6)

L =
∫

�e

∇N∇NT d� (7)

G = −
∫

�e

∇NNd� (8)

F =
∫

�e

N�gd� (9)

S =
∫

�e

(∇N) 	
(

�

�t
N
)

d� (10)

D = −GT (11)

N stands for the vector of standard linear FE shape functions, �e

is the element integration domain, 	 is an algorithmic stabilization
coefficient defined as 	 = (((2||v||)/h) + (4
/h2))

−1
, where h is the

element size. Note also that the discrete operators given by Eqs.
(6)–(11) correspond to the unknown current configuration Xn+1
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