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a b s t r a c t 

The complex variable element-free Galerkin (CVEFG) method is an efficient meshless 

Galerkin method that uses the complex variable moving least squares (CVMLS) approx- 

imation to form shape functions. In the past, applications of the CVMLS approximation 

and the CVEFG method are confined to 2D problems. This paper is devoted to 3D prob- 

lems. Computational formulas and theoretical analysis of the CVMLS approximation on 

3D domains are developed. The approximation of a 3D function is formed with 2D basis 

functions. Compared with the moving least squares approximation, the CVMLS approxi- 

mation involves fewer coefficients and thus consumes less computing times. Formulations 

and error analysis of the CVEFG method to 3D elliptic problems and 3D wave equations 

are provided. Numerical examples are given to verify the convergence and accuracy of the 

method. Numerical results reveal that the CVEFG method has better accuracy and higher 

computational efficiency than other methods such as the element-free Galerkin method. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Meshless (or meshfree) methods have been developed and achieved prominent progress in the past 25 years for the 

numerical solution of science and engineering problems. Compared with mesh-based methods, the formulation of shape 

functions in meshless methods requires only nodes with no mesh. The moving least squares (MLS) approximation [1] is an 

efficient and frequently used technique to form meshless shape functions. Many meshless methods, such as the element- 

free Galerkin (EFG) method [2] , the meshless local Petrov–Galerkin (MLPG) method [3] , the boundary node method (BNM) 

[4] and the symmetric Galerkin BNM [5] have been developed using the MLS approximation. Besides, theoretical results and 

improvements of the MLS approximation have also been established [6–8] . The MLS approximation can form shape functions 

with high accuracy and smoothness. However, since the MLS approximation of an n -dimensional function is formed exactly 

with n -dimensional basis functions, many coefficients are involved in the approximation and thus lots of nodes are required 

in the MLS-based meshless methods [7] . 

To reduce the number of coefficients in the MLS approximation and hence to improve the computational efficiency of 

the MLS-based meshless methods, Cheng et al. proposed the complex variable moving least squares (CVMLS) approximation 

by introducing the complex variable theory into the MLS approximation [9,10] . By expressing a 2D point x = ( x 1 , x 2 ) 
T as 

z = x 1 + i x 2 with one variable z , the CVMLS approximation of a 2D function is formed with 1D basis functions. Then, fewer 
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coefficients and fewer nodes are required in constructing shape functions. Some meshless methods, such as the complex 

variable element-free Galerkin (CVEFG) method [11] , the complex variable meshless local Petrov–Galerkin method [12] , the 

complex variable boundary element-free method [13] and the complex variable Galerkin boundary node method (CVGBNM) 

[14] have been developed based on the CVMLS approximation. To take the merits of these complex variable meshless meth- 

ods, the complex variable theory has also been introduced into the reproducing kernel particle method [15] and the mov- 

ing Kriging interpolation [16] . Moreover, Bai et al. proposed the improved CVMLS approximation and the improved CVEFG 

method by using conjugate basis functions [17,18] . Compared with the original EFG method, these CVEFG methods have 

higher accuracy and computational efficiency. 

The complex variable theory is valid and perfect for 2D space. In previous papers, the CVEFG method and other complex 

variable meshless methods have been applied to many 2D science and engineering problems [7,9–19] . Very good results 

are gained in solving these problems. However, these papers only provide applications to 2D problems and there are no 

indications if their discoveries can be applied to 3D problems. In Refs. [20,21] , Cheng et al. stated that the CVEFG method 

cannot be applied to 3D problems owing to the use of the complex variable theory. This is the main deficiency of the CVEFG 

method and other complex variable meshless methods. 

The solution of problems in 3D domain is generally much more complex than in 2D domain owing to the increase of 

the computational burden and the troubles in the discretization of the domain. To the best of our knowledge, very few 

published papers are devoted to the development of complex variable meshless methods for 3D problems. In Refs. [20,21] , 

Cheng et al. proposed a dimension splitting CVEFG method for 3D potential and transient heat conduction problems. In their 

work, a 3D problem is transformed into a set of 2D ones by using the dimension splitting technique, and then the CVEFG 

method is used in 2D domain and the finite difference discretization is used in the splitting direction. Besides, Li et al. 

proposed a CVGBNM for 3D potential, Helmholtz and Stokes problems [22] . With the aid of boundary integral equations 

[23,24] , the CVMLS approximation in the CVGBNM is performed only on the 2D bounding surface of a 3D domain. In these 

papers, the CVMLS approximation is not used in a 3D space but a 2D space. On the other hand, owing to the use of special 

techniques, the dimension splitting CVEFG method inherits the shortcomings of the dimension splitting technique, while the 

CVEFG method inherits the shortcomings of boundary integral equations. In this paper, the CVMLS approximation and the 

CVEFG method are developed in a generic 3D space. 

The first goal of this paper is to develop and analyze a 3D CVMLS approximation. Formulations of the CVMLS approx- 

imation on 3D domains are developed in detail. Then, properties, stability and error of the 3D CVMLS approximation are 

discussed theoretically. By expressing a 3D point x = ( x 1 , x 2 , x 3 ) 
T as x = ( z, x 3 ) 

T with two variables z = x 1 + i x 2 and x 3 , the 

CVMLS approximation of a 3D function is formed with 2D basis functions. Then, the CVMLS approximation involves fewer 

coefficients and requires fewer nodes than the MLS approximation. 

The second goal of this paper is to develop and analyze a CVEFG method for 3D problems. In the CVEFG method, shape 

functions are formulated by the CVMLS approximation and are used for approximating the Galerkin weak form of boundary 

value problems. Computational formulas of the CVEFG method for 3D elliptic problems and 3D wave equations are deduced 

in detail. Error of the CVEFG method is also analyzed theoretically. Numerical examples are given to show the performance 

of the method. Convergence and comparison researches are conducted to validate the accuracy, convergence and efficiency. 

2. The CVMLS approximation for 3D functions 

2.1. Notations 

Let � be a bounded domain in R 

3 with a Lipschitz continuous boundary �. For any point x = ( x 1 , x 2 , x 3 ) 
T ∈ �, let z = 

x 1 + i x 2 , where i = 

√ −1 is an imaginary number. Then, the point x can be denoted as x = ( z, x 3 ) 
T with two variables z and 

x 3 . As a result, the CVMLS approximation of 3D functions can be constructed by using 2D basis functions. 

Let { x I } N I=1 be N scattered nodes in �. For any x ∈ �, we use ∧ ( x ) 
�= { I 1 , I 2 , . . . , I τ } ⊆ { 1 , 2 , . . . , N } to denote the global 

sequence numbers of nodes whose influence domains cover x . The influence domain of x I is 

� I 
�= � ( x I ) = { y ∈ � : | y − x I | ≤ h I } , (1) 

where h I is the radius of � I . Let 

h = max 
1 ≤I≤N 

min 

1 ≤J ≤N,J 	 = I 

∣∣x I − x J 

∣∣
be the nodal spacing. For theoretical analysis, let the data site { x I } N I=1 satisfy the quasi-uniform condition, 

C 1 h ≤ h I ≤ C 2 h, I = 1 , 2 , . . . , N, (2) 

where C 1 and C 2 are positive constants independent of h . In the reproducing kernel particle method [25] and the MLS 

approximation [26,27] , a similar quasi-uniform condition has also been used. 

Let 

w I ( x ) = ϕ 

( | x − x I | 
h I 

)
, I = 1 , 2 , . . . , N, (3) 
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