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a b s t r a c t 

Physical essence of the fictitious boundary of the method of fundamental solutions has 

been a mystery for a long time. In this study, we attempt to explain the reason why fic- 

titious boundary has such a dramatic effect on numerical results. The influence law of 

the fictitious boundary on numerical results is revealed. Based on this understanding, a 

dual-level method of fundamental solutions with self-adaptive adjustment coefficients is 

proposed. The competitive attributes of the method are that it inherits the high numeri- 

cal efficiency of the method of fundamental solutions, and it improves numerical stability 

significantly. The effect of the fictitious boundary on numerical results is eliminated by in- 

troducing the concept of equivalent slope. It should be noted that the dual-level method of 

fundamental solutions can simulate exterior high frequency acoustic problems under the 

lowest sampling frequency allowed by the Shannon’s sampling theorem. Numerical exper- 

iment with up to non-dimensional wavenumber of 600 has successfully been conducted 

on a single laptop when one uses 10 0,0 0 0 degrees of freedom. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Highly efficient simulation of high frequency sound wave propagation plays an important role in science and engineering 

fields [1 , 2] , such as underwater sonar imaging detection [3] and active noise control analysis [4] . 

The propagation of sound wave in the isotropic medium is governed by a Helmholtz equation [5–7] . Unlike the Laplace 

problems [8–10] , it is very difficult to solve efficiently the Helmholtz equation with large wavenumber due to the resulting 

coefficient matrix being large-scale and highly ill-conditioned. 

On one hand, the high frequency methods have been widely applied for high frequency acoustic problems due to their 

less computational complexity and storage requirement using the geometric optics method (GO) [11] , the geometrical the- 

ory of diffraction (GTD) [12] and the physical theory of diffraction (PTD) [13] . However, lower computational accuracy and 

instability restrict the applications of these methods for some acoustic problems having high precision requirements. 

On the other hand, numerical simulation has merits of high accuracy. In recent years, a lot of new methods have been 

proposed for high frequency acoustic problems, such as the boundary knot method (BKM) [14–16] , the asymptotic decom- 

position (AD) approach [17] , the asymptotically derived boundary element method (ADBEM) [18] and the singular boundary 

method (SBM) [19–21] . They all have their own merits and drawbacks. The BKM can’t be applied for exterior problems, and 

the obtained matrix is highly ill-conditioned. The AD approach and the ADBEM can only simulate the problems whose prop- 

erties have been priori known. The SBM requires at least 6–8 boundary nodes in one wavelength per direction to produce an 
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acceptable solution. To bypass these limitations, a modified singular boundary method (MSBM) was proposed recently [22] . 

Numerical investigation showed that the MSBM avoids the ill-conditioned matrix and needs only to place 2–3 source points 

in one wavelength per direction to produce the acceptable solution accuracy. However, the MSBM still has to be artificially 

truncated to satisfy the radiation boundary conditions at infinity for exterior problems. 

The method of fundamental solutions (MFS) [23–25] is an efficient method to solve partial differential equations. The es- 

sential characteristic of the MFS is to introduce a fictitious boundary to solve the singularity of fundamental solutions. By the 

help of the fictitious boundary, the MFS can obtain highly accurate results using very few degrees of freedom (DOF) and CPU 

time. But the fictitious boundary also brings high uncertainty, which is the most important weakness of the MFS. Therefore, 

although the MFS has high numerical efficiency, it has rarely been applied for practical problems. Many researchers have 

proposed a lot of strategies [26 , 27] to remedy instability of the MFS. However, these strategies usually slow down the com- 

putation speed of the MFS and reduce its numerical efficiency. In addition, the physical reason why the fictitious boundary 

has such a dramatic effect on numerical results has never been explained successfully before. 

In this study, we attempt to explain the reason why the fictitious boundary has such a dramatic effect on numerical re- 

sults, and try to reveal how fictitious boundary affects numerical results. Based on this understanding, a dual-level method 

of fundamental solutions (DLMFS) with self-adaptive adjustment coefficients is proposed. The core feature of the DLMFS is 

to use a modified fundamental solution of the Helmholtz equation to replace the original fundamental solution. The method 

improves significantly stability, and it inherits high numerical efficiency of the MFS. The DLMFS places source points and 

their mirror source points on the fictitious boundary and physical boundary, respectively, and then combines the fundamen- 

tal solutions generated by these two sets of source nodes as a modified fundamental solution of the Helmholtz equation. By 

introducing the concept of the equivalent slope, we provide an explicit empirical formula of the adjustment coefficient to 

eliminate the effect of different fictitious boundaries on numerical results. 

Considering that the matrix obtained from the Helmholtz equation with high wavenumber usually has characteristics 

of large scale, high condition number (L2-norm) and high rank [28] , solving of this type of matrix is a very difficult task. 

Therefore, we choose a high frequency acoustic problem to test the newly proposed DLMFS. In comparison with the existing 

methods [29–31] , the DLMFS requires only to place 2 DOF in one wavelength per direction to produce acceptable solutions. 

This sampling frequency has already been down to the lowest one allowed by the sampling theorem. The other merit is 

that the DLMFS can automatically overcome non-uniqueness difficulty [32] for exterior acoustic problems. Thus the singular 

and hyper-singular integrals in the Burton–Miller formulations [33] are avoided. Subsequent numerical experiments carried 

out on a single laptop show that when one uses 10 0,0 0 0 DOF, the DLMFS can yield accurate solutions for exterior three- 

dimensional (3-D) pulsating sphere problems with up to non-dimensional wavenumber of kd = 600 ( d = 2 m), where d is the 

maximum diameter of computational domain. 

A brief outline of this article is as follows. Section 2 explains physical essence of the fictitious boundary and introduces 

the numerical methodology of the DLMFS. Section 3 investigates the DLMFS through two benchmark examples. Finally, some 

conclusions and outlooks are given in Sections 4 and 5 . 

2. Numerical methodology 

2.1. Analysis of effect of the fictitious boundary on numerical results 

In this section, we analyze how different fictitious boundaries affect numerical results in the MFS and explain the physical 

essence of the fictitious boundary, which constitute the main contribution of this study. For the convenience of physical 

deduction, the 3-D potential model is adopted as an example of illustration. 

The whole solution process can be divided into three stages when one uses numerical methods to simulate a physical 

problem. They are the mathematical modeling, the numerical analyzing and the numerical solving. In the stage of mathe- 

matical modeling, a physical problem is reduced to partial differential equations. Model error arises from this stage. In the 

stage of numerical analyzing, one uses a numerical method to analyze the resulting partial differential equations, such as the 

BEM and the DLMFS. Discretization error arises from this stage. In the stage of numerical solving, one solves the obtained 

linear system of equations with the aid of a numerical solver, such as the Gauss solver and the generalized minimal residual 

algorithm solver. Truncation error arises from this stage. 

The main error sources in the MFS are the discretization error and the truncation error. The proportion of weight of 

discretization error and truncation error decides the quality of numerical solutions. This proportion changes with location 

of the fictitious boundary. This is the reason why different fictitious boundaries have such a dramatic effect on numerical 

results. 

At first, we analyze the relationship between discretization error and fictitious boundary. As is known to us all, numerical 

characteristics of the radial basis functions methods depend on property of the basis functions with change of distance. In 

this study, we use slope of the basis functions to illustrate its property related to distance. We suppose that p 0 is the 

average distance between the fictitious boundary and physical boundary. The function curve of fundamental solutions of the 

3-D Laplace equation corresponding to p 0 is plotted in Fig. 1 . 

From the perspective of qualitative analysis, Fig. 1 can be divided into three parts according to slope of the fundamental 

solutions, namely, the sensitive part, the best part and the unresponsive part. When the distance between the fictitious 

boundary and the physical boundary is located on the sensitive part of the fundamental solutions, the fundamental solutions 
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