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a b s t r a c t 

This work presents a fixed-point fast sweeping weighted essentially non-oscillatory 

method for the multi-commodity continuum traffic equilibrium assignment problem with 

elastic travel demand. The commuters’ origins (i.e. home locations) are continuously 

dispersed over the whole city with several highly compact central business districts. The 

traffic flows from origins to the same central business district are considered as one 

commodity. The continuum traffic equilibrium assignment model is formulated as a static 

conservation law equation coupled with an Eikonal equation for each commodity. To solve 

the model, a pseudo-time-marching approach and a third order finite volume weighted 

essentially non-oscillatory scheme with Lax–Friedrichs flux splitting are adopted to solve 

the conservation law equation, coupled with a third order fast sweeping numerical method 

for the Eikonal equation on rectangular grids. A fixed-point fast sweeping method that 

utilizes Gauss–Seidel iterations and alternating sweeping strategy is designed to improve 

the convergence for steady state computations of the problem. A numerical example is 

given to show the feasibility of the model and the effectiveness of the solution algorithm. 

© 2018 Published by Elsevier Inc. 

1. Introduction 

Continuum modeling of traffic equilibrium problems in a transportation system provides an efficient way to deal with 

large-scale dense road networks [1] . In the continuum modeling approach, a dense road network can be approximated as 

a two-dimensional (2D) continuum in which road users can choose their routes freely. This approach can reduce problem 

size for a dense road network in a large area. Here, the problem size depends on the method used to approximate the 

modeling region rather than on the actual number of nodes and links modeled. The fundamental assumption made is that 

differences in the modeling characteristics of adjacent areas within a network (e.g. travel costs and demand patterns) are 

relatively small in comparison with the variations over the entire network. Therefore, the characteristics of the network, 

such as traffic demand, flow intensity, density and travel cost, can be represented by smooth mathematical functions in 

a continuum model [2] . The relationships among these macroscopic variables can be well established with less data. In 
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view of these advantages, the continuum modeling approach is now widely used to model the multi-commodity cost-flow 

relationship [3,4] , market share determination [5,6] , cordon-based congestion pricing problems [7] , housing problems [8,9] , 

dynamic traffic assignment problems [1,10] and pedestrian flow problems [11–18] . 

For continuum transportation problems, flow variables and trip demand satisfy the flow conservation condition in a 2D 

continuum [3] . Under the static assumption of the demand and supply sides of a transportation system, the flow conserva- 

tion condition is involved with a stationary problem of hyperbolic conservation laws with source term. Suppose that, every 

road user in a transportation system has perfect traffic information and chooses an optimal route that minimizes either the 

total travel time or cost to his/her travel destination. A user equilibrium condition is reached based on this user-optimal 

route choice behavior of road users [3,7] . The continuum traffic equilibrium model composed of the flow conservation con- 

dition and the user equilibrium condition can be effectively solved by mathematical tools, such as the finite element method 

[3,6,19] . However, the finite element method results in a large system of algebraic equations and thus is subject to certain 

numerical difficulties in saving computing time and computer memory space, especially if the accuracy of the algorithm is 

improved or the mesh of the computational domain is refined. 

To deal with nonlinear stationary conservation laws, a typical approach is to use an explicit time-stepping or pseudo- 

time-stepping technique [20–22] . This technique adds a pseudo-time variable which turns a stationary problem into a time 

dependent one and evolves the solution to steady state. However, the computational efficiency of this approach is restricted 

by a Courant–Friedrichs–Lewy (CFL) condition for the discrete time step size and it takes significant time to evolve the 

solution of the pseudo-time problem to steady state [23] . Recently, a fast sweeping method, which was originally designed 

for solving static Hamilton–Jacobi equations [24–27] , has been applied to solve hyperbolic conservation laws with source 

terms [23,28] . This method is an efficient Gauss–Seidel iterative numerical scheme to the boundary value problems with 

solution information propagating along characteristics starting from the boundary. The resulting algorithm typically has 

linear computational complexity. In [27] , Zhang et al. adopted the Gauss–Seidel idea and alternating sweeping strategy to the 

time-marching type fixed-point iterations to solve static Hamilton–Jacobi equations. This fixed-point fast sweeping approach 

has an explicit form and does not involve inverse operation of nonlinear local systems. Hence, it can be utilized to solve 

very general stationary problems of hyperbolic conservation laws using any monotone numerical fluxes and high order 

approximations, e.g. weighted essentially non-oscillatory (WENO) approximations [29,30] . 

In this paper, we extend the fixed-point fast sweeping WENO method to solve the multi-commodity continuum traffic 

equilibrium assignment problem. The commuters’ origins (i.e. home locations) are assumed to be continuously dispersed 

over the whole city with several highly compact central business districts (CBDs). The trip demand to each CBD (i.e. desti- 

nation) is elastic and is considered to be dependent on the total travel cost to that CBD. The traffic flows from origins to 

the same destination are considered as one commodity. The traffic equilibrium assignment problem is formulated as a static 

conservation law equation coupled with an Eikonal equation for each commodity. The fixed-point fast sweeping method 

incorporated into a third order finite volume WENO scheme with Lax–Friedrichs flux splitting [29] is used to solve the con- 

servation law equation, coupled with a third order fast sweeping numerical method for the Eikonal equation on rectangular 

grids. We also give a numerical example to test the rationality of the model and the effectiveness of the solution algorithm. 

The rest of the paper is organized as follows: in Section 2 , the mathematical formulation for the multi-commodity con- 

tinuum traffic equilibrium assignment problem is described in detail. Section 3 gives a numerical algorithm for the contin- 

uum equilibrium model of multi-commodity traffic flows. The numerical results are presented in Section 4 . Finally, some 

concluding remarks are given in Section 5 . 

2. Problem formulation 

Consider a city with several highly compact CBDs, as shown in Fig. 1 . The city with a very dense transportation network 

can be approximated as a 2D continuum [3] . The commuters’ origins (i.e. home locations) are continuously distributed 

outside the CBDs. It is assumed that commuters travel from origins to their chosen CBD along the least costly route in the 

morning, and vice versa in the evening. The traffic flows from origins to the same CBD are considered as one commodity. 

Denote the region of the city as �, the boundary of the city as ∂�, and the boundary of the CBD for commodity m as �m 

, 

m = 1 , 2 , . . . , M, where M is the number of commodities in the city. 

The demand distribution of commodity m is represented by q m 

( x , y ), where q m 

( x , y ) dxdy is the travel demand generated 

from location ( x , y ) to CBD m . To consider the elasticity of travel demand, q m 

( x , y ) is assumed to be associated with the 

total travel cost of commodity m from location ( x , y ) to the CBD [3,4] , and can be written as 

q m 

(x, y ) = D m 

(φm 

(x, y )) , (x, y ) ∈ �. (1) 

Here, D m 

is a monotonically decreasing function and φm 

( x , y ) is the total travel cost incurred by commodity m traveling 

from location ( x , y ) to destination �m 

where φm 

(x, y ) = 0 . 

Let f m 

( x , y ) is the flow intensity (or norm) of the flow vector f m 

= ( f xm 

, f ym 

) for commodity m , i.e. f m 

= 

√ 

f 2 xm 

+ f 2 ym 

. 

Here, f xm 

and f ym 

are the flow flux of commodity m in the x and y directions, respectively. For each commodity, the flow 

vector f m 

and trip demand q m 

( x , y ) must satisfy the flow conservation condition inside the domain of the city as 

∇ · f m 

(x, y ) = q m 

(x, y ) , (x, y ) ∈ �. (2) 
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