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a b s t r a c t 

Nanoscale solidification is becoming increasingly relevant in applications involving ultra- 

fast freezing processes and nanotechnology. However, thermal transport on the nanoscale 

is driven by infrequent collisions between thermal energy carriers known as phonons and 

is not well described by Fourier’s law. In this paper, the role of non-Fourier heat conduc- 

tion in nanoscale solidification is studied by coupling the Stefan condition to the Guyer–

Krumhansl (GK) equation, which is an extension of Fourier’s law, valid on the nanoscale, 

that includes memory and non-local effects. A systematic asymptotic analysis reveals that 

the solidification process can be decomposed into multiple time regimes, each charac- 

terised by a non-classical mode of thermal transport and unique solidification kinetics. For 

sufficiently large times, Fourier’s law is recovered. The model is able to capture the change 

in the effective thermal conductivity of the solid during its growth, consistent with experi- 

mental observations. The results from this study provide key quantitative insights that can 

be used to control nanoscale solidification processes. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Advances in the field of nanotechnology are improving the efficiency, functionality, and cost-effectiveness of modern 

devices. Nanowire-based solar cells, for instance, offer several advantages over traditional wafer-based and thin-film tech- 

nologies [1] . Furthermore, the unique physical properties of carbon nanotubes have enabled the fabrication of new elec- 

trochemical biosensors [2] . Nanotechnology is also playing an increasing role in biology and medicine [3] , where it finds 

applications in drug and gene delivery [4] , protein detection [5] , and tissue engineering [6] . A key issue surrounding the 

use of nanoelectronic devices [7] , nano-enabled energy systems [8] , and nanomedicine [9] is that of thermal management 

[10,11] . The ability to successfully manipulate heat can be vital to device performance [12] and a lack of thermal regulation 

can lead to melting and device failure [13] . Understanding nanoscale heat transfer and phase change is therefore crucial for 

current and future applications of nanotechnology. 

At the nanoscale, heat transfer and phase change become markedly different from their macroscopic counterparts. This 

is partially attributed to the increased ratio of surface-to-bulk atoms, which can introduce a size dependence to key ther- 

modynamic parameters such as melt temperature [14–16] , latent heat [17–19] , and surface energy [20] . Furthermore, the 

mean free path of thermal energy carriers, known as phonons, can be on the order of hundreds of nanometers in crystalline 
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solids at room temperature [11] . As a result, thermal transport on the nanoscale occurs as a ballistic process that is driven 

by infrequent collisions between phonons, in contrast to macroscopic thermal transport, which is a diffusive process driven 

by frequent collisions and gradients in the temperature. The ballistic nature of nanoscale heat transport can lead to substan- 

tial decreases in the effective thermal conductivity of nanomaterials, which has been experimentally confirmed [11,21,22] in 

samples with length scales up to 10 microns [23] , far beyond the nano-regime. 

Extensive research has been carried out to develop practical theories of heat transport and phase change that are valid 

at the nanoscale. The role of size-dependent parameters in nanoparticle [24–29] and nanowire [30,31] melting has been 

studied using Fourier-based models of heat conduction [32] . However, models that are derived from Fourier’s law can only 

capture diffusive thermal transport and lead to an infinite speed of heat propagation, in clear contrast to the ballistic nature 

of nanoscale heat transport observed in experiments. Several approaches have been aimed at addressing this shortcom- 

ing [33] . Cattaneo [34] proposed that a temperature gradient can only induce a thermal flux after a finite amount of time 

has passed. An expansion of the governing equations about small relaxation times leads to the hyperbolic heat equation 

(HHE), or Maxwell–Cattaneo equation, which captures the wave-like propagation of heat associated with ballistic transport. 

Although the HHE correctly describes heat propagation with finite speed, the introduction of a relaxation time is some- 

what ad-hoc and masks the underlying physics of nanoscale thermal transport. Guyer and Krumhansl [35,36] later derived 

from the linearised Boltzmann transport equation an extension to the HHE which includes non-local effects and explicitly 

incorporates the phonon mean free path into the governing equations. The Guyer–Krumhansl (GK) equation is particularly 

appealing from a theoretical point of view because it provides a link between kinetic and continuum models and is based 

on well-defined physical parameters. Moreover, the striking similarity between the GK and Navier–Stokes equations enables 

nanoscale heat transport to be conceptualised in terms of fluid mechanics and this analogy has been used to rationalise the 

reduced thermal conductivity of nanosystems in terms of phonon hydrodynamics [33,37,38] . 

Theoretical studies of nanoscale phase change that incorporate non-Fourier heat transport are predominantly based 

on the HHE and originally focused on mathematical issues [39–41] and the correct form of boundary conditions [42,43] . 

Solomon et al. [44] developed an enthalpy formulation of the hyperbolic Stefan problem and used numerical simulations to 

show that increasing the relaxation time can alter the solidification kinetics. Liu et al. [45] compared the parabolic (classical) 

and hyperbolic Stefan problems in the context of thermal spray particles and concluded that flux relaxation only influences 

the early stages of solidification, which agrees with the earlier work by Sadd and Didlake [46] . As shown by Mullis [47] , 

hyperbolic heat transport can strongly influence the formation of dendrites in rapidly solidifying metal baths. Recently, the 

hyperbolic Stefan model has been applied to solidification problems arising in pulsed-laser surface treatment [48] , cryop- 

reservation of skin [49] and other biological tissues [50] , and cryosurgery of lung cancer [51] . Sobolev [52] derived the GK 

equation from a two-temperature model and coupled it to the Stefan condition to study ultra-fast melting and solidification 

in the context of pulsed-laser experiments. This study, however, was restricted to the case of constant interface velocities 

and travelling-wave solutions for the temperature and flux. 

In this paper, we carry out a detailed investigation of nanoscale solidification by coupling the GK equation to the Stefan 

condition. Matched asymptotic expansions are used to solve the free boundary problem without prior assumptions about the 

form of the solution and interface velocity. The systematic asymptotic analysis clearly elucidates the relationship between 

non-Fourier heat transport and the kinetics of solidification, and demonstrates the occurrence of large deviations from the 

classical behaviour predicted by Fourier’s law. To the best of our knowledge, this is the first time that matched asymptotic 

expansions have been used to study non-Fourier Stefan problems. 

The paper is organised as follows. In Section 2 , a one-phase model for one-dimensional nanoscale solidification is pre- 

sented. The model focuses on heat conduction through the solid as described by the GK equation. Asymptotic solutions 

to the one-phase model are computed in Section 3 and used to understand how non-Fourier heat transport affects the 

solidification process. The paper concludes in Section 4 . 

2. Model formulation 

We consider the growth of a nanoscale solid into a semi-infinite liquid bath, as depicted in Fig. 1 . We will assume that 

one side of the bath is exposed to a cold environment that is held at a temperature T e that is below the freezing temperature 

T f . The solidification process will, therefore, be solely driven by the transfer of heat from the bath into the environment. 

Newton’s law will be used to model the exchange of thermal energy between the solid and surrounding environment. The 

Fig. 1. The solidification of a semi-infinite liquid bath that is in contact with a cold environment with temperature T e . The transfer of heat from bath into 

the environment drives the solidification process and is modelled using a Newton boundary condition with a heat transfer coefficient h . The position of 

the planar solid-liquid interface is denoted by x = s (t) . 
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