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a b s t r a c t 

The Laplace transform is applied to solve the groundwater flow equation with a bound- 

ary that is initially fixed but that starts to move at a constant rate after some fixed time. 

This problem arises in the study of pore water pressures due to erosional unloading where 

the aquifer lies underneath an unsaturated zone. We derive an analytic solution and ex- 

amine the predicted pressure profiles and boundary fluxes. We calculate the negative pore 

water pressure in the aquifer induced by the initial erosion of the unsaturated zone and 

subsequent erosion of the aquifer. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Erosional unloading is the process whereby surface rocks and soil are removed by external processes, resulting in changes 

to water pressure within the underlying aquifer [1] . Jiao and Zheng [2] used vertical one-dimensional numerical models to 

investigate abnormal fluid pressures in geologic formations caused by gravitational loading or unloading due to deposition 

or erosion in sedimentary basins. 

We consider a mathematical model of changes in excess pore water pressure as a result of erosional unloading. An 

equivalent porous medium description is used to model the resulting flow [3] . This approach has been shown to be a 

good model of flow in aquifers [4] . Neuzil and Pollock [5] studied this process in the case where the water table initially 

coincides with the surface. We generalize this case to an ideal aquifer which is initially separated from the ground surface 

by an unsaturated zone. Rates of erosion are discussed in [6,7] , but in terms of representative values and without addressing 

temporal variability. In the absence of further information, we consider steady erosion here as a first step. 

The problem is solved using the Laplace transform in conjunction with the boost operator derived by King [8] . The boost 

operator is used to boost the solution in the Laplace domain into a frame of reference moving at constant velocity with 

respect to the original frame. This allows one to solve the the erosional unloading problem in which one boundary moves. 

We use our solution to analyze the evolution of the pressure during erosion of the aquifer for small and large erosion 

rates. We examine the flux at the boundaries a function of time and derive a quasi-steady approximation valid for very 

small erosion rates in the appendix. 

∗ Corresponding author. 

E-mail addresses: swgagniere@gmail.com (S. Gagniere), sgls@ucsd.edu (G.S. Llewellyn Smith), hdyeh@mail.nctu.edu.tw (H.-D. Yeh). 

https://doi.org/10.1016/j.apm.2018.03.041 

0307-904X/© 2018 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.apm.2018.03.041
http://www.ScienceDirect.com
http://www.elsevier.com/locate/apm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apm.2018.03.041&domain=pdf
mailto:swgagniere@gmail.com
mailto:sgls@ucsd.edu
mailto:hdyeh@mail.nctu.edu.tw
https://doi.org/10.1016/j.apm.2018.03.041


S. Gagniere et al. / Applied Mathematical Modelling 61 (2018) 72–82 73 

Fig. 1. System configuration. 

2. Problem formulation 

The model studied by Neuzil and Pollock [5] consists of a single layer of saturated aquifer where the water table is near 

the surface. This layer is bounded at the bottom by an impermeable layer. 

Our model does not assume that the water table is next to the surface; instead we take the unsaturated zone to have 

non-negligible thickness (see Fig. 1 ). The capillary and soilwater zones are taken to have negligible thickness and are not 

considered. The underlying layer below is taken to be impermeable [1] . While both the permeable and impermeable cases 

are mentioned in [5] and both can be treated using the present approach, the latter is more relevant to applications and is 

hence considered here. Neuzil and Pollock [5] analyzed the following inhomogeneous equation for groundwater flow: 

c 
∂ 2 p ′ 
∂z 2 

= 

∂ p ′ 
∂t 

− ρs g 
∂ l 

∂t 
. (1) 

This equation comes from Darcy’s Law and conservation of mass applied to volume elements within the aquifer. Our source 

term differs from that of Neuzil and Pollock in the time interval before erosion and in the time interval during erosion. The 

rate of erosion ∂ l/∂ t = b will be assumed to be constant, and the aquifer is homogeneous. 

Let the unsaturated zone and the aquifer have initial thicknesses of H and L , respectively. It follows that the permeable 

layer is at an initial depth of H + L from the ground surface. The coordinate system is chosen so that the origin coincides 

with the initial depth of the water table. The z -coordinate will be taken to point down (see Fig. 1 ). 

2.1. Governing equations 

For the period before erosion, the governing equation is 

∂ p 

∂t 
− c 

∂ 2 p 

∂z 2 
= −γ ρm 

gb. (2) 

Here, p is the excess pore water pressure, c = K/S with hydraulic conductivity K and specific storage S, ρm 

is the moist 

density of the unsaturated zone, γ is the loading efficiency and g is gravity. 

The initial condition is p = 0 at t = 0 , while the boundary conditions are p = 0 at z = 0 and ∂ p/∂ z = 0 at z = L . Erosion 

starts at t = H/b, and during erosion the field equation is 

∂ p 

∂t 
− c 

∂ 2 p 

∂z 2 
= −γ (ρs − ρ f ) gb. (3) 

Here, ρs is the saturated density of the aquifer and ρ f is the groundwater density. The boundary condition at the bottom of 

the aquifer remains p = 0 , but now the upper boundary moves, so that p = 0 at z = bt − H. 

We non-dimensionalize using L for length, c −1 L 2 for time and γ ρm 

gbc −1 L 2 for pressure. The non-dimensional equations 

are then 

∂ p 

∂t 
− ∂ 2 p 

∂z 2 
= 

{
−1 for t < t 0 , 
−r for t > t 0 , 

(4) 
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