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The paper considers common nonlinear characteristics of inelastic deformation and fracture of loaded solids and similarity of numeri-
cal solutions of a nonlinear system of relevant partial differential equations. The self-similarity of inelastic strain and damage accumula-
tion in the entire hierarchy of scales — from interatomic distances up to tectonic faults of many thousands of kilometers in the Earth
crust — ensures qualitative similarity of fracture scenarios whatever the scale of deformation and rheology of a medium. The common
properties of deformed systems are spatial localization of inelastic strain and damage accumulation in the entire hierarchy of scales, further
temporal strain localization as a superfast autocatalytic blow-up process, slow dynamics (deformation fronts or slow motions), and strain
activity migration due to long-range space-time correlations over the entire hierarchy of scales. Thus, fracture evolves as a sequence of
catastrophes of increasing scales up to macroscales. It is shown that self-organized criticality of any deformed system does not exclude the
possibility to predict the time and the place of a future catastrophic event. Precursors of similar large-scale events can be (i) frozen strain
activity in the immediate vicinity of a formed main crack or fault and (ii) generation of trains of deformation fronts (damage fronts) in this
region and their flow toward the site of a formed main crack (fault).
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1. Introduction. Physical mesomechanics and
nonlinear dynamics

Almost 30 years has passed since Prof. Victor E. Panin
and colleagues formulated the concept of structural levels
of deformation [1, 2] which underlies the new scientific
trend — physical mesomechanics of materials. In the frame-
work of physical mesomechanics, its founder — V.E. Pa-
nin — and his followers and disciples have developed novel
experimental and theoretical research methods and ap-
proaches to deformation and fracture of loaded materials
and media as multiscale hierarchical systems whose evolu-
tion in effective force fields follows the laws of nonlinear
dynamics or synergetics [3—18]. Synergetics as a self-orga-
nization theory and nonlinear dynamics as a whole have
given an insight into many things, and primarily, into the
general pattern of any evolutionary process. Particularly im-
pressive works are those in which experimental data are
processed by methods of nonlinear dynamics (certain of
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important examples are discussed below). However, the
problem of research on the evolution of real natural and
physical systems remains almost unsolvable, because their
behavior is modeled by partial differential equations for
which methods of analyzing common properties of solu-
tions are hardly available. The only exception is a rapidly
developed field of nonlinear dynamics — asymptology or
asymptotic mathematics covering methods of asymptotic
analysis of complex mathematical models of real objects
[19].

Like nonlinear dynamics, physical mesomechanics ac-
tually treats the evolution of a specific nonlinear system —
aloaded solid [15, 16, 20, 21] or a hard solid medium, e.g.,
a geological medium [21, 22]. In this sense, theoretical
physical mesomechanics is thus part of nonlinear dynamics.
All laws of evolution of complex nonlinear systems in clas-
sical nonlinear dynamics or synergetics are found in full
measure in loaded solids and solid media. This is evident
from both experiments [13, 16, 23] and theoretical solu-
tions of evolution equations for a deformed solid in effec-
tive force fields [15, 20]. Nonlinear dynamics investigated
and continues for the most part to investigate the peculiari-
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ties of solutions of base synergetic equations, such as heat
or diffusion equations, Ginzburg—Landau and Korteweg—
de Vries equations, cubic Schrodinger equations (and its
other forms), and simpler differential equations that admit
of analytical analysis of peculiarities of their solution [24—
31]. However, attempts to employ these base equations in
analysis of the behavior of real physical and natural sys-
tems or in applied research are very often vain and incor-
rect for the mere fact that these equations are mostly not a
strict mathematical model of the phenomenon under study.
The similarity of the basic features and peculiarities of evo-
lution scenarios — a threshold character of physical phe-
nomena, spatial-temporal localization of processes, fast
modes of evolution, bifurcations and changes of evolution
scenarios, correlative behavior of system elements in a wide
range of scales, self-organization, and many others — is by
no means an indication of the similarity as such between
evolution scenarios of various nonlinear systems. The sce-
narios are most likely to differ radically; a classical example
is the sensitivity of many nonlinear systems to the least varia-
tion of equation coefficients resulting in distinct evolution
scenarios in the systems. So a slight variation in coefficients
in a trimolecular kinetic model — a Brusselator — can give
us rings, spirals, multiturn spirals, etc. [29, 30], i.e., even in
the same equation, the variation in specified properties of a
nonlinear medium results in different types of dissipative
structures, their multidimensional architecture and evolu-
tion in time [31].

For correct theoretical study of the evolution of any real
process, we should first of all construct its realistic mathe-
matical model, formulate an evolutionary problem, and
analyze solutions of appropriate nonlinear equations [20,
22] rather than resort to well-studied base equations for the
mere reason that their solutions demonstrate, for example,
the observed blow-up effect or localization of parameters.
Clearly with rare exception, this will be systems of partial
differential equations admitting only of their numerical so-
lution. The need for analysis of numerical solutions of par-
tial differential equations as equations describing the evo-
lution of real physical processes or giving a solution of ap-
plied problems was ripe long ago and is one of the most
urgent problems of nonlinear dynamics. In our works [20,
22,32], it is shown that solutions of partial differential equa-
tions of solid mechanics demonstrate all peculiar features
of the evolution of dynamic nonlinear systems (they are
listed above) where the dynamic problem to be solved is
stated as an evolutionary problem [20]. The use of well-
studied base synergetic equations by many researchers in
analysis of real natural and physical systems allows little
other than familiar general reasoning about peculiarities of
an evolutionary process, fails to give quantitative charac-
teristics of the evolution, and generates sceptisism in the
scientific community about the potentialities and efficiency
of nonlinear dynamics methods.

The new paradigm of physical mesomechanics has been
found so fruitful that despite the tremendous successes and
new understanding of deformation and fracture mechanisms,
it opens up more and more avenues for study of urgent
strength problems of materials and constructions in the
framework of its concepts and approaches.

One of these “perennial problems” is the prediction of
the place and time of future fracture, be it fracture of a labo-
ratory specimen or a structural member, a catastrophic mine
roof collapse, or a fault in the Earth crust that leads to an
earthquake. It is thought that the paradigm of physical
mesomechanics — consideration of a deformed medium as
a multiscale nonlinear system — is bound to radically
change both the understanding and the approaches to the
solution of this problem.

This paper is a theoretical analysis of the evolution pe-
culiarities of deformed nonlinear systems in the framework
of the mathematical evolutionary theory of loaded solids
and media developed by the author and colleagues [20, 32].
The numerical solutions to be analyzed are those of dy-
namic equations of solid mechanics.

2. Fracture prediction and self-organized criticality
of deformed nonlinear systems

If we put the simple, but very important question of
whether there exits an easy and efficient procedure to pre-
dict the place and time of fracture or grounds to hope for its
development in the nearest future, the answer to the first
part of the question will be “no” and to the second part —
“yes”.

The traditional criterion approach of phenomenologi-
cal fracture macromechanics is incapable, in principle, of
solving the prediction problem. According to the traditional
notion, for example, of the —¢ diagram of a deformed metal
polycrystal (Fig. 1), we first observe various stages of strain
hardening, and as the ultimate strength is reached, fracture
occurs. A similar interpretation is conventional also for frac-
ture of brittle materials with the only difference that the
small portion of the ascending branch of the stress—strain
curve after elastic deformation is interpreted as inelastic
deformation caused by the medium compliance in response
to damage accumulation. The question arises of how a da-
maged medium can be stronger than a less damaged one at
lower inelastic strain. The same question can be addressed
to strain hardening. The growth of the mean stress over a
specimen for both plastic and brittle materials has no rela-
tion to its actual local strength under loads; this strength is
much higher than the specimen mean macrostress described
by the 6—¢ diagram. The local strength of a loaded me-
dium can only drop due to accumulation of micro- and meso-
scale defects and damages of varying physical origin in the
medium. When a slow quasistationary stage of damage ac-
cumulation gives way to a superfast autocatalytic process —
a blow-up mode in a local fracture region — the local
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