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Effect of residual surface stress and surface elasticity on deformation
of nanometer spherical inclusions in an elastic matrix
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The analytical solution of the Eshelby problem, which describes the deformation of an elastic medium inside and outside a spherical
inclusion with uniform internal eigenstrain and specified remote stress, is generalized taking into account both surface elasticity and
residual surface stress. Expressions are derived for the internal and external Eshelby tensors and stress concentration tensors with regard to
the above effects. A characteristic strain field inhomogeneity and its dependence on the inclusion diameter in the nanometer range (the
scale effect) are found. It is shown that under certain conditions, the effect of residual surface stress surpasses that of surface elasticity.
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1. Introduction

As the size of deformed solids is decreased down to
nanometers, scale effects of their physical properties come
into play. The classical theory of elasticity lacks character-
istics of a medium with length dimension such that this
theory fails to describe the scale effect. Describing the ob-
served scale effect of mechanical behavior of nanoobjects,
such as nanotubes, nanowhiskers (nanowires), nanoinclu-
sions, thin films, atomic clusters, nanoislands, etc., requires
one or another generalization of the theory of elasticity.

A possible explanation for the arising scale effect is the
impossibility to apply the continuum approximation to nano-
sizes, i.e., of importance on these scales is the discrete atomic
structure of material. The governing factor, in this case, can
be peculiar features of the atomic structure of near-surface
layers and near-interface regions. The role of these rela-
tively narrow regions can greatly increase in importance
where the number of near-surface atoms is no longer too
small compared to that of atoms in the rest material.

Numerous ab initio calculations and semiempirical mo-
lecular simulations, which take into account the atomic struc-
ture of materials, and experimental studies confirm the scale
effect in nanoobjects of size from fractions to tens of na-
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nometers. This behavior is found, in particular, in simpli-
fied discrete film models (e.g., [1]) and generalized nanotube
elasticity models based on molecular simulation (e.g., [2]).

In recent years, there has been a dominant trend toward
describing the mechanical behavior of nanoobjects in the
framework of generalized theory of elasticity in which a
nonstandard characteristic is introduced only for surfaces
and interfaces of material, while its bulk is treated using the
classical theory. In so doing, anomalous surface elasticity
is described by various constitutive relations that supple-
ment ordinary Hooke’s law.

A theoretical estimate of the role of surface elasticity
peculiarities of nanoparticles is rather easy to obtain using
the well-known Eshelby problem [3]. This problem con-
sists in determining the stress-strain state of an infinite elastic
medium with a spherical inclusion that differs in material
from the matrix and experiences uniform eigenstrain. The
eigenstrain can be induced by thermal expansion, phase
transformation, incompatible atomic lattices of the matrix
and inclusion, residual stress, plastic flow, twinning, etc.
The analytical solution of the Eshelby problem with regard
to additional surface strains described by two-dimensional
Hooke’s law and generalized surface elastic moduli is ana-
lyzed in detail in [4, 5]. However, the researchers take no
account of the so important factor like residual surface stress.
In our work, this parameter is taken into account and, using
available theoretical estimates of surface elastic moduli and
residual stress, it is shown that the latter can be of greater
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significance than the former. We begin our paper with gen-
eral relations and solutions of the Eshelby problem for a
spherical inclusion with internal eigenstrain and surface
effects and analyze kinematics, statics and constitutive equa-
tions for its spherical boundary. These data are reported in
Sect. 2, 3. In Sect. 4, we present a dependence of the strain
fields induced by the spherical inclusion on its eigenstrain
with regard to surface effects (Eshelby tensor). This sec-
tion considers in detail only the internal Eshelby tensor
components for the strain field inside the inclusion; certain
of cumbersome coefficient functions entered in the solu-
tion are given in Appendix. A distinctive feature of the de-
rived solution is a nonuniform strain field and a scale effect
(the dependence of the solution on the inclusion diameter).
Section 5 provides a solution of the more general problem
on the stress-strain state inside and outside the inclusion
with specified internal eigenstrain and specified remote
stress fields with regard to elastic strain and residual stress
at the “elastic matrix — inclusion” interface. Finally, Sec-
tion 7 discusses the association between the interface con-
stitutive equations used and the known, by and large, more
general Gurtin—-Murdoch constitutive equations [6, 7]. The
effects under consideration, in our viewpoint, are impor-
tant for the further advances in physical mesomechanics
[8, 9] whose main approaches concern, among other things,
the description of the processes occurring on various scales
at the meso-to-nanolevel transition.

2. Relations for the medium inside and outside
the inclusion

In the subsequent discussion we assume that the me-
dium under study can be considered as a piecewise-homo-
geneous medium in which every subregion is described by
equations of the linear theory of elasticity with possible
eigenstrain (initial or residual). In this context, due to the
problem linearity, the strain € for the k-th homogeneous
region can be expressed as the sum of elastic and inelastic
components:
kT
ij
Hereinafter the second upper index T stands for total strain,
and the second upper index 0 for eigenstrain. If no second
upper index is used, it is for elastic strain. The first upper
index k characterizes the region under study; this index can
go with e (matrix) and i (inclusion). The lower indices de-
note components of tensor quantities.

In the problem, which is similar to the known Eshelby
problem, we assume that the infinite elastic matrix is every-
where free from eigenstrain, and the inclusion experiences
homogeneous eigenstrain. The assumption of homogeneity
is sufficient to resolve both the strain and the displacements
into elastic and inelastic components:
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Here the indices for U are similar to those for the strain.

In view of the problem linearity, it is sufficient to fur-
ther consider uniaxial eigenstrain, whereupon we can ar-
rive at a general solution by simple superposition of the
solutions corresponding to eigenstrain in different direc-
tions.

The elastic displacement field inside and outside the
spherical inclusion can be represented in spherical coordi-
nates r, 0, ¢ as follows (see, e.g., [10], Sect. IV, formulae

(1.8), (1.10)):
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Here R is the inclusion radius; P,(x) is the Legendre poly-
nomials; V', v¢ are Poisson’s ratios for the inclusion and
matrix, respectively; 4,, B,, C,, D, are the coefficients
to be determined. The discussion below makes clear that
for the problem under study we suffice to retain the lowest
terms with n < 2, while the terms with n = 1 should be
omitted because they are related to the resultant force vec-
tor, which is absent in the problem.

In the inclusion problem with eigenstrain, the total dis-
placements inside the inclusion are elastic displacements
(3) and eigendisplacements due to the uniform tensile eigen-
strain €'° along the z axis:
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The elastic strain inside and outside the inclusion is
expressed in terms of the elastic displacements in the ordi-
nary way:
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