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a b s t r a c t

The score function method used to compute first order probabilistic sensitivities is extended in this work
to arbitrary-order derivatives included mixed partial derivatives through the use of multicomplex
mathematics. Multicomplex mathematics provides an effective and convenient numerical means to
compute the high-order kernel functions with respect to natural parameters or moments (mean and
standard deviation) obviating the need to analytically determine the kernel functions. Using these nu-
merical kernel functions, high-order derivatives of the response moments or the probability-of-failure
with respect to the parameters of the input distributions can be obtained. Numerical results indicate that
the high-order probabilistic sensitivities converge with respect to the number of samples at the same
rate as standard Monte Carlo estimates. Implementation of multicomplex mathematics is facilitated
through the use of the Cauchy–Riemann matrices; therefore, the extension of common engineering
probability distributions to matrix form is presented.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The score function (SF) method is an effective method for
computing the sensitivity of a probability estimate with respect to
the parameters of the input random variables. That is, one can
obtain the partial derivative of an expected value estimate with
respect to the parameters of the distribution, e.g., mean, standard
deviation, shape, or scale, of the input random variables.

The SF method has some attractive features for sensitivity
analysis as outlined below.

1.1. Partial derivative based

Since SF provides partial derivatives, this information is useful
for design modifications. The partial derivatives are computed
with respect to the natural parameters or mean and standard
deviation of the random variable. Hence, one can project the
change in a response with respect to a change in the mean or
standard deviation separately. These partial derivatives are global
in the sense that the results depend upon the full variation of the
random variable. That is, they are local to the random variable
parameters but not any particular random variable value. This is
analogous to global sensitivity analysis [23] whose results depend
up the parameters of the distribution but not on any particular

value of the random variable.

1.2. Indifferent to the limit state form

SF is insensitive to the form of the limit state. That is, there is
no requirement that the limit state be smooth, differentiable,
continuous, etc. Sensitivities for system reliability or component
reliability problems can be obtained in an analogous manner.

1.3. Inexpensive to compute

A significant attraction of SF is that the partial derivatives can
be computed for negligle computational cost. The calculation of
the partial derivatives is formulated as an expected value with
respect to the same joint density function as the original problem.
Hence SF uses the same random variable realizations and func-
tional responses that were used during original analysis, e.g., to
compute the probability-of-failure or response moments.

1.4. Post-processing operation

As outlined in the previous paragraph, since the existing sam-
ples and functional responses are already available, SF merely
processes the values within auxilary equations that are simple to
compute. Hence it is entirely a post-processing operation. This is
beneficial in that SF results can be obtained after the original
analysis if the samples and responses are available.
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1.5. Variance estimates are available

The partial derivatives, if computed using random sampling,
are themselves random variables. However, high quality variance
estimates exist and can be used to construct confidence bounds
[12].

The development of the SF method has progressed steadily
over the past few decades. Much of the foundation of the Score
Function method has been conducted by Rubinstein and published
in a series of papers. The fundamental methodology is described in
[19,20,22] with applications to discrete event static and dynamic
systems. Derivatives up to second order are discussed. Rubinstein
and Shapiro [21] discuss the basic formulation in the context of
discrete event systems and demonstrate the use of the Score
Function method in stochastic optimization. Wu [28] applied SF to
system reliability analysis and used importance sampling for the
probability calculations. Kleijnen and Rubinstein [7] discuss how
SF can be combined with experimental design to reduce the fac-
tors to be considered. Rubinstein discusses the optimization of
computer models with rare events (1997).

Sues and Cesare [25] developed the sensitivity of the response
mean and standard deviation with respect to the input probability
density function (PDF) parameters. Wu and Mohanty [29] pro-
posed using the methodology as a screening method for problems
with a large number of random variables. Millwater and Osborn
[12] applied SF to the probabilistic fatigue analysis of a gas turbine
disk and developed variance estimates such that confidence
bounds can be computed for each probabilistic sensitivity. Mill-
water demonstrated that the kernel functions must satisfy certain
properties regardless of distribution type. These properties were
then used to develop distribution-free analytical expressions of
the partial derivatives of the response moments (mean and stan-
dard deviation) with respect to the PDF parameters for linear and
quadratic response functions [11]. Rahman [18] provides an ap-
plication of dimensional reduction and the SF method for calcu-
lating stochastic sensitivities. Millwater et al. [14] extended the
kernel functions to the multivariate normal distribution, including
derivatives with respect to the correlation coefficient. Millwater
and Feng [15] extended the method to the case of derivatives with
respect to the bounds of truncated distributions by including a flux
term of the PDF across the boundary of the truncated distribution.
Lee et al. [9] use copulas with the SF method to consider corre-
lation between random variables. Millwater et al. [13] used the SF
method to develop a localized sensitivity method that can identify
the important region of a probability distribution. Garza and
Millwater [4] applied concepts of the SF to compute the sensitivity

of the probability-of-failure with respect to the parameters of a
probability-of-detection curve. Wang et al. [27] developed a
methodology using the SF method to compute the derivatives (i.e.,
first and second-order, including mixed) of the first-order variance
contribution of a response with respect to parameters of the
random variables.

The extension of SF to high order sensitivities is straightfor-
ward in concept but has not been extended to high-order sensi-
tivities primarily due to the complexity of generating high-order
kernel functions analytically. Although simple in concept, the
calculation of the high-order kernel functions is cumbesome and
error prone to compute analytically. A significant complicating
factor for high dimensional derivatives is that Jacobian transfor-
mations are required to map derivatives with respect to the nat-
ural parameters into derivatives with respect to the mean and
standard deviation. The Jacobian transformations are needed since
most PDFs are defined in terms of natural parameters rather than
the mean and standard deviation.

In contrast to the complexities involved using analytical
methods, numerical methods using multicomplex mathematics to
compute the high-order kernel functions are straightforward to
implement, remove the need for Jacobian transformations, and are
extendable to arbitrary order derivatives. As a result, the high-
order kernel functions are computed here numerically using
multicomplex mathematics. Since multicomplex numbers can be
represented using matrices, the PDFs must be defined in terms of
matrices and matrix functions must be used during their
evaluation.

2. Multicomplex mathematics

This section introduces the basic concepts of multicomplex
mathematics. More details can be found in Price [17], Lantoine
et al. [8], Millwater and Shirinkam [24].

2.1. The multicomplex pace n

The set of all numbers in the nth dimensional multicomplex
space is denoted by n. The first case, =n 0, is defined as the set of
all real numbers (i.e., = :0 ). The second case, =n 1, is defined as
the set of all complex numbers (i.e., = :1 ). These two number
systems should be very familiar, in that the rules of algebraic op-
eration for numbers and functions defined on these spaces are
well known.

Multicomplex numbers are a multi-dimensional generalization

Nomenclature

h perturbation size
f scalar function
N number of samples
x vector of random variables
z response function
Pf probability-of-failure
[ ]Pf multicomplex probability-of-failure
μZ response mean
μ[ ]Z multicomplex response mean

VZ response variance
[ ]VZ multicomplex response variance
σZ response standard deviation

σ[ ]Z multicomplex response standard deviation
( )f xX probability density function

[ ( )]f xX multicomplex probability density function
σRS residual strength
σEVD maximum applied stress
a0 initial crack size
KC fracture toughness
Y geometry correction factor
KI mode I stress intensity factor

Msqrt matrix square root
Mlog matrix logarithm
Mexp matrix exponential

ΓM matrix gamma
ψM matrix digamma
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