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a b s t r a c t 

Time delays are many sources of complex behavior in dynamical systems. Yet its relation- 

ship with bursting dynamics needs to be further explored, particularly when the strength 

of feedback is a nonlinear function of delay. In this paper, we analyze the dynamics of the 

van der Pol–Duffing fast-slow oscillator controlled by the parametric delay feedback, where 

the strength of feedback control is a function exponential varying with the time delay. The 

system may exhibit a unique equilibrium point and three ones for the different parame- 

ters by employing the pitchfork bifurcation. Next, the stability-switches and the Hopf bi- 

furcation curves are presented as the delay varies, which leads to the occurrence of novel 

bursting phenomena. Some weak resonant or non-resonant double Hopf bursting oscilla- 

tions are presented due to the vanishing of real parts of two pairs of characteristic roots. 

Not only the magnitude of the time delay itself but also the strength of feedback control 

may influence the dynamical evolution process of bursting behaviors in the delayed sys- 

tem. Such fast-slow forms about bursting dynamics, as well as classifications about local 

dynamics are investigated. Furthermore, periodic and quasi-periodic bursting motions are 

verified in both theoretical and numerical ways. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

As a typical kind of second-order nonlinear dynamic system, van der Pol–Duffing equation is one of the commonest 

examples in research articles, which describes the oscillations in vacuum tube circuit [1–3] . Many efforts have been made 

to find its analytical solution or construct Poincaré maps to illustrate its important dynamical features [4–6] . In reality, 

the time delay is inevitable such as physical systems, manufacturing process, population dynamics, controlling systems and 

network communication systems, and the delay feedback control has been widely applied in mechanical and electronic 

facilities [7–10] . 

Our study aims at the dynamical behaviors of the van der Pol–Duffing oscillator with a parametric delay feedback, which 

can be described as 

ẍ ( t ) + δ
[
x 2 ( t ) − a 

]
˙ x ( t ) + α1 x ( t ) + α2 x 

3 ( t ) = A 

[
e −pτ x ( t − τ ) − x ( t ) 

]
(1) 

where δ, a , and α1 are positive real constants, and τ > 0 is the time delay. Note that the strength of feedback control takes 

the form of Ae − p τ , i.e., a function exponential varying with the time delay. This implies that the feedback effect of the 
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past state is changing with the time. Apparently, the strength of delayed feedback control becomes the delay-independent 

constant for p = 0. Here p is called as the exponent change rate of feedback control. 

Eq. (1) becomes the van der Pol–Duffing system with a regular delay at p = 0, which has served as one of many basic 

models in physics, electronics, biology, neurology and so on [11–16] . Early results about van der Pol–Duffing equation with 

delay are concerned with approximate solutions and the normal form computation [17,18] . For example, the center manifold 

method has been adopted to reduce this parametrical time delay oscillator into finite-dimensional system, and the bifur- 

cation analysis could be achieved for the reduced system including Hopf bifurcations, double Hopf bifurcations and other 

complex dynamics [19–21] . 

For our study, the exponent change rate is excited by a slow-varying item, as it takes the form of p = B cos ( �t ), where B 

is the excitation amplitude, � is the excitation frequency and set as 0 < � � 1. Noting that the order gap exists between 

the excitation frequency and the natural frequency of system without excitation, the effect of multiple time scales appears 

[22–24] . This leads to the emergence of bursting patterns [25,26] , where the slow varying rate p plays an important role in 

dynamical evolution process. 

Bursting oscillations are periodic orbits of a dynamical system characterized by an alternation between oscillations of 

very distinct large and small amplitudes. These types of dynamic were reported in neuronal recordings, mechanical and 

electrical systems [27–29] . Moreover, bursting oscillations have also been linked to many dynamical mechanisms, such as 

the singularity of Hopf bifurcation, break-up of invariant torus and slow passage effect through various bifurcation behaviors 

[30] . 

However, to the best of our existing knowledge, there are still few articles about higher codimensional bursting phenom- 

ena induced by the parametric delay feedback. Our present work aims at investigating the occurrence of possible complex 

bursting oscillations in van der Pol–Duffing oscillator with exponential delay-dependent parameters. We shall use the bifur- 

cation analysis method in delay differential equations (DDEs) introduced by Stepan and co-workers [31–34] to investigate 

the stability of the fixed point and the dynamics near the equilibrium point under the Hopf bifurcations. This dynamical 

mechanism may yield complex oscillatory patterns including local cycles, relaxation cycles or transitions with torus solu- 

tions, where we can characterize with a combination of bifurcation analysis and numerical simulations. 

The paper is organized as follows. After introducing our model and the motivations behind this work in Section 1 , we 

investigate the two-parameter geometrical criterion to the stability and the Hopf bifurcations of the fast system correspond- 

ing to Eq. (1) in Section 2 . The following bursting dynamics can be analyzed as a function of the exponent change rate. 

In Section 3 , bursting oscillations switching around multiple stable states are presented in this model, where the change 

rate can be considered as a tuning parameter to regulate such bursting dynamics. Section 4 shows the existence of reso- 

nant or non-resonant double Hopf bifurcation and how these elements are the source of complex oscillatory patterns with 

quasi-periodic spiking motions. Finally, Section 5 summarizes the main conclusions of the paper. 

2. Stability switches and bifurcations on slow manifold 

In this section, we first consider the system ( 1 ) as the coupling of two autonomous subsystems by regarding the change 

rate of p as a slow subsystem (or variable), which is written as p = B cos ( �t ). The complex bursting dynamics can be ana- 

lyzed through the fast subsystem (FS) of Eq. (1) . The fast subsystem may dominate the dynamics while the slow subsystem 

(variable) may modulate the behaviors of FS under multiple time scale effect. Therefore, we begin our study at investigating 

the stability-switches and the Hopf bifurcations of the fast subsystem, where the delay τ and the exponent rate p have been 

chosen as bifurcation parameter. 

2.1. Analysis for equilibrium points 

Simple in form as it is, the equilibrium points of FS can be written in the form of E( x, y ) ≡ E( x, ˙ x ) = E( x 0 , 0 ) , where x 0 
is decided by the real roots of the following equation: 

−α1 x 0 − α2 x 
3 
0 + A 

(
e −pτ x 0 − x 0 

)
= 0 , i . e ., x 0 

(
−α1 − α2 x 

2 
0 + A e −pτ − A 

)
= 0 (2) 

From Eq. (2) , it is easy to see that origin is the unique equilibrium when ( −α1 + A e −pτ − A ) / α2 < 0 ; whereas for 

( −α1 + A e −pτ − A ) / α2 > 0 , system ( 1 ) has three equilibrium points E 0 (0,0) and E ±( ±
√ 

( −α1 + A e −pτ − A ) / α2 , 0 ) , the local 

stability of which can be determined by using the associated characteristic equations. Moreover, by using local bifurcation 

analysis method, we can conclude that the three equilibrium points may join together to form a cusp bifurcation behav- 

ior, where a pitchfork bifurcation occurs at −α1 + Ae − p τ − A = 0, corresponding to the colliding between the two symmetric 

nontrivial equilibrium points and the trivial equilibrium point. 

More precisely, in case of α2 > 0, if −α1 + Ae − p τ − A < 0, the system has unstable trivial equilibrium points E 0 and 

the other two stable equilibrium points; while if −α1 + Ae − p τ − A > 0, the untrivial equilibrium points disappear while the 

trivial equilibrium point still exists but it becomes stable. On the other hand, in case of α2 < 0, if −α1 + Ae − p τ − A < 0, 

the system has only unstable trivial equilibrium point E 0 ; while if at the condition of −α1 + Ae − p τ − A > 0, the trivial equi- 

librium point still exists but it becomes stable, and meanwhile the other two unstable E ± appear and coalesce at zero (see 

in Fig. 1 ). 
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